• search hit 1 of 12
Back to Result List

Three-dimensional breast cancer model to investigate CCL5/CCR1 expression mediated by direct contact between breast cancer cells and adipose-derived stromal cells or adipocytes

Please always quote using this URN: urn:nbn:de:bvb:20-opus-362502
  • The tumor microenvironment (TME) in breast cancer is determined by the complex crosstalk of cancer cells with adipose tissue-inherent cells such as adipose-derived stromal cells (ASCs) and adipocytes resulting from the local invasion of tumor cells in the mammary fat pad. This leads to heterotypic cellular contacts between these cell types. To adequately mimic the specific cell-to-cell interaction in an in vivo-like 3D environment, we developed a direct co-culture spheroid model using ASCs or differentiated adipocytes in combination withThe tumor microenvironment (TME) in breast cancer is determined by the complex crosstalk of cancer cells with adipose tissue-inherent cells such as adipose-derived stromal cells (ASCs) and adipocytes resulting from the local invasion of tumor cells in the mammary fat pad. This leads to heterotypic cellular contacts between these cell types. To adequately mimic the specific cell-to-cell interaction in an in vivo-like 3D environment, we developed a direct co-culture spheroid model using ASCs or differentiated adipocytes in combination with MDA-MB-231 or MCF-7 breast carcinoma cells. Co-spheroids were generated in a well-defined and reproducible manner in a high-throughput process. We compared the expression of the tumor-promoting chemokine CCL5 and its cognate receptors in these co-spheroids to indirect and direct standard 2D co-cultures. A marked up-regulation of CCL5 and in particular the receptor CCR1 with strict dependence on cell–cell contacts and culture dimensionality was evident. Furthermore, the impact of direct contacts between ASCs and tumor cells and the involvement of CCR1 in promoting tumor cell migration were demonstrated. Overall, these results show the importance of direct 3D co-culture models to better represent the complex tumor–stroma interaction in a tissue-like context. The unveiling of tumor-specific markers that are up-regulated upon direct cell–cell contact with neighboring stromal cells, as demonstrated in the 3D co-culture spheroids, may represent a promising strategy to find new targets for the diagnosis and treatment of invasive breast cancer.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Martin Watzling, Lorenz Klaus, Tamara Weidemeier, Hannes Horder, Regina EbertORCiD, Torsten Blunk, Petra Bauer-Kreisel
URN:urn:nbn:de:bvb:20-opus-362502
Document Type:Journal article
Faculties:Medizinische Fakultät / Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II)
Language:English
Parent Title (English):Cancers
ISSN:2072-6694
Year of Completion:2023
Volume:15
Issue:13
Article Number:3501
Source:Cancers (2023) 15:13, 3501. https://doi.org/10.3390/cancers15133501
DOI:https://doi.org/10.3390/cancers15133501
Sonstige beteiligte Institutionen:Lehrstuhl für Regeneration Muskuloskelettaler Gewebe
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:3D breast cancer model; adipocytes; adipose tissue; adipose-derived stromal cells; co-culture; spheroids
Release Date:2024/06/10
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International