Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II)
Refine
Has Fulltext
- yes (167)
Is part of the Bibliography
- yes (167)
Year of publication
Document Type
- Journal article (88)
- Doctoral Thesis (79)
Keywords
- fracture (8)
- Biomechanik (7)
- Hyaluronsäure (5)
- Osteosynthese (5)
- Plattenosteosynthese (5)
- Polytrauma (5)
- Tissue Engineering (5)
- adipose tissue (5)
- cartilage (5)
- Distale Radiusfraktur (4)
Institute
- Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie (Chirurgische Klinik II) (167)
- Lehrstuhl für Orthopädie (15)
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (14)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (14)
- Graduate School of Life Sciences (6)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (6)
- Neurochirurgische Klinik und Poliklinik (5)
- Physiologisches Institut (5)
- Institut für Anatomie und Zellbiologie (4)
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (4)
Sonstige beteiligte Institutionen
The benefits of cochlear implantation in children with severe hearing impairments are widely known; however, there is no consensus regarding which minimal outcome measurements (MOMs) should be used to determine outcomes in this population with pediatric cochlear implant (CI). Therefore, the authors aim to propose a MOM test battery for pediatric CI recipients that can facilitate international multi-center research and collaboration. A pediatric MOM test battery was developed and agreed-upon by members of the HEARRING group across 30 expert clinics in the field of hearing implantation. The MOM test battery was chosen based on a literature search that focused on outcome measurements applied in clinical trials involving children with a hearing implant. Members of the HEARRING group were then asked to evaluate each of the pediatric MOM tests used. The final pediatric MOM test battery was defined for different chronological age categories (six weeks–18 years) at different suggested test intervals. The test battery includes objective hearing measurements, aided and unaided audiometry, speech perception tests in quiet and in noise, subjective hearing assessments, assessment of language development, and mental and motor development. This study presents a consensus on a MOM test battery for pediatric CI recipients that was agreed upon by members of the HEARRING group. This test battery should allow for international multi-center research to be able to extend and share evidence that will guide future clinical practice and research efforts in pediatric populations with CI.
Background
Gastric pull-up (GPU) procedures may be complicated by leaks, fistulas, or stenoses. These complications are usually managed by endoscopy, but in extreme cases multidisciplinary management including reoperation may be necessary. Here, we report a combined endoscopic and surgical approach to manage a failed secondary GPU procedure.
Case summary
A 70-year-old male with treatment-refractory cervical esophagocutaneous fistula with stenotic remnant esophagus after secondary GPU was transferred to our tertiary hospital. Local and systemic infection originating from the infected fistula was resolved by endoscopy. Hence, elective esophageal reconstruction with free-jejunal interposition was performed with no subsequent adverse events.
Conclusion
A multidisciplinary approach involving interventional endoscopists and surgeons successfully managed severe complications arising from a cervical esophago-cutaneous fistula after GPU. Endoscopic treatment may have lowered the perioperative risk to promote primary wound healing after free-jejunal graft interposition.
The electrohydrodynamic stabilization of direct-written fluid jets is explored to design and manufacture tissue engineering scaffolds based on their desired fiber dimensions. It is demonstrated that melt electrowriting can fabricate a full spectrum of various fibers with discrete diameters (2–50 µm) using a single nozzle. This change in fiber diameter is digitally controlled by combining the mass flow rate to the nozzle with collector speed variations without changing the applied voltage. The greatest spectrum of fiber diameters was achieved by the simultaneous alteration of those parameters during printing. The highest placement accuracy could be achieved when maintaining the collector speed slightly above the critical translation speed. This permits the fabrication of medical-grade poly(ε-caprolactone) into complex multimodal and multiphasic scaffolds, using a single nozzle in a single print. This ability to control fiber diameter during printing opens new design opportunities for accurate scaffold fabrication for biomedical applications.
Melt electrowriting (MEW) is an additive manufacturing technology that is recently used to fabricate voluminous scaffolds for biomedical applications. In this study, MEW is adapted for the seeding of multicellular spheroids, which permits the easy handling as a single sheet-like tissue-scaffold construct. Spheroids are made from adipose-derived stromal cells (ASCs). Poly(ε-caprolactone) is processed via MEW into scaffolds with box-structured pores, readily tailorable to spheroid size, using 13–15 µm diameter fibers. Two 7–8 µm diameter “catching fibers” near the bottom of the scaffold are threaded through each pore (360 and 380 µm) to prevent loss of spheroids during seeding. Cell viability remains high during the two week culture period, while the differentiation of ASCs into the adipogenic lineage is induced. Subsequent sectioning and staining of the spheroid-scaffold construct can be readily performed and accumulated lipid droplets are observed, while upregulation of molecular markers associated with successful differentiation is demonstrated. Tailoring MEW scaffolds with pores allows the simultaneous seeding of high numbers of spheroids at a time into a construct that can be handled in culture and may be readily transferred to other sites for use as implants or tissue models.
The use of bone-cement-enforced osteosynthesis is a growing topic in trauma surgery. In this context, drillability is a desirable feature for cements that can improve fracture stability, which most of the available cement systems lack. Therefore, in this study, we evaluated a resorbable and drillable magnesium-phosphate (MgP)-based cement paste considering degradation behavior and biocompatibility in vivo. Two different magnesium-phosphate-based cement (MPC) pastes with different amounts of phytic acid (IP 6) as setting retarder (MPC 22.5 and MPC 25) were implanted in an orthotopic defect model of the lateral femoral condyle of New Zealand white rabbits for 6 weeks. After explantation, their resorption behavior and material characteristics were evaluated by means of X-ray diffraction (XRD), porosimetry measurement, histological staining, peripheral quantitative computed tomography (pQCT), cone-beam computed tomography (CBCT) and biomechanical load-to-failure tests. Both cement pastes displayed comparable results in mechanical strength and resorption kinetics. Bone-contact biocompatibility was excellent without any signs of inflammation. Initial resorption and bone remodeling could be observed. MPC pastes with IP 6 as setting retardant have the potential to be a valuable alternative in distinct fracture patterns. Drillability, promising resorption potential and high mechanical strength confirm their suitability for use in clinical routine.
The tumor microenvironment (TME) in breast cancer is determined by the complex crosstalk of cancer cells with adipose tissue-inherent cells such as adipose-derived stromal cells (ASCs) and adipocytes resulting from the local invasion of tumor cells in the mammary fat pad. This leads to heterotypic cellular contacts between these cell types. To adequately mimic the specific cell-to-cell interaction in an in vivo-like 3D environment, we developed a direct co-culture spheroid model using ASCs or differentiated adipocytes in combination with MDA-MB-231 or MCF-7 breast carcinoma cells. Co-spheroids were generated in a well-defined and reproducible manner in a high-throughput process. We compared the expression of the tumor-promoting chemokine CCL5 and its cognate receptors in these co-spheroids to indirect and direct standard 2D co-cultures. A marked up-regulation of CCL5 and in particular the receptor CCR1 with strict dependence on cell–cell contacts and culture dimensionality was evident. Furthermore, the impact of direct contacts between ASCs and tumor cells and the involvement of CCR1 in promoting tumor cell migration were demonstrated. Overall, these results show the importance of direct 3D co-culture models to better represent the complex tumor–stroma interaction in a tissue-like context. The unveiling of tumor-specific markers that are up-regulated upon direct cell–cell contact with neighboring stromal cells, as demonstrated in the 3D co-culture spheroids, may represent a promising strategy to find new targets for the diagnosis and treatment of invasive breast cancer.
Purpose
Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs.
Methods
Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes.
Results
Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type.
Conclusions
R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.
Für den Funktionserhalt nach einer Fragilitätsfraktur ist eine stabile Osteosynthese, welche eine frühfunktionelle Nachbehandlung zur Vermeidung längerer Immobilität erlaubt, mit suffizienter Reposition essenziell. Die stabile Osteosynthese kann in osteoporotischem Knochen jedoch durch dessen schwache biomechanische Eigenschaften limitiert sein. Indem die in-situ-Implantataugmentation mit Knochenzement die Belastbarkeit des Knochens in Implantatnähe verbessert, kann auch in osteoporotischem Knochen eine stabile Osteosynthese erreicht werden.
Ziel dieser Studie war es, eine vielversprechende Formulierung eines Magnesiumphosphatzementes so weiterzuentwickeln, dass deren Anwendung bei der in-situ-Implantataugmentation möglich wurde. In einem zweiten Schritt sollte die Formulierung gegenüber kommerziell erhältlichen Knochenzementen durch die Materialprüfung im Druckversuch und mithilfe eines biomechanischen Testmodells evaluiert werden.
Die Vorversuche offenbarten die Nachteile der konventionellen, wasserbasierten Magnesiumphosphatzementformulierung bei der in-situ-Implantataugmentation: „Filter Pressing“ und eine unpassende Viskosität limitierten die Anwendung. Erst die Formulierung als vorgemischte Magnesiumphosphat-Paste mit Propan-1,2,3,-triol als Bindemittel verbesserte die Injizierbarkeit und ermöglichte eine verlässliche in-situ- Implantataugmentation.
Bei der Zementevaluation zeigte Traumacem™ V+ als PMMA-Zement die höchste Kompressionsfestigkeit im Druckversuch, die höchste Rotationsstabilität in der Torsionsprüfung und eine sehr gute Injizierbarkeit. Paste-CPC und MgPO-Paste zeigten sich in Druckversuch und Torsionsprüfung untereinander vergleichbar, wobei die MgPO-Paste tendenziell eine initial höhere Stabilität aufweist. Für den Parameter Normalisiertes Drehmoment zeigten alle Zementgruppen einen statistisch signifikanten Unterschied zur Kontrollgruppe, was den stabilitätssteigernden Effekt aller verwendeten Knochenzemente demonstriert. Es konnte kein Effekt der in-situ-Implantataugmentation auf Phimax, also auf den, bis zum maximalen Drehmoment gefahrenen Winkel, gefunden werden. Die Korrelation zwischen Drehmoment und Knochendichte zeigte den Zusammenhang zwischen Rotationsstabilität und Knochendichte für die Kontrollgruppe, welcher jedoch bei Zementaugmentation mit Traumacem™ V+ und MgPO-Paste verschwand.
Zusammengefasst wurde in dieser Studie erstmals eine biologisch vorteilhafte MgPO- Paste für den Einsatz bei der in-situ-Implantataugmentation entwickelt und verwendet. Weiter konnte der stabilitätssteigernde Effekt der Zementaugmentation mit dieser MgPO-Paste, sowie mit den Knochenzementen Traumacem™ V+ und Paste-CPC, für TFNA-Schenkelhalsklingen im isolierten Femurkopf-Modell gezeigt werden. Der Einsatz der MgPO-Paste bei der in-situ-Implantataugmentation bedarf bis zur eventuellen Marktreife einer Verbesserung der Injizierbarkeit sowie der Evaluation in klinischen Studien.
Present surgical situations require a bone adhesive which has not yet been developed for use in clinical applications. Recently, phosphoserine modified cements (PMC) based on mixtures of o-phosphoserine (OPLS) and calcium phosphates, such as tetracalcium phosphate (TTCP) or α-tricalcium phosphate (α-TCP) as well as chelate setting magnesium phosphate cements have gained increasing popularity for their use as mineral bone adhesives. Here, we investigated new mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides, which possess excellent adhesive properties. These were analyzed by X-ray diffraction, Fourier infrared spectroscopy and electron microscopy and subjected to mechanical tests to determine the bond strength to bone after ageing at physiological conditions. The novel biomineral adhesives demonstrate excellent bond strength to bone with approximately 6.6–7.3 MPa under shear load. The adhesives are also promising due to their cohesive failure pattern and ductile character. In this context, the new adhesive cements are superior to currently prevailing bone adhesives. Future efforts on bone adhesives made from phosphoserine and Mg2+ appear to be very worthwhile.
Background
To cover soft tissue defects, the perforator-based propeller flap offers the option to rotate healthy tissue into complex wounds. By rotating the flap, the perforator is torqued. As a result, perfusion changes are possible.
Methods
A retrospective data analysis of patients was done, who received a propeller flap to cover soft tissue defects of the lower extremity as well as a peri- and postoperative perfusion monitoring with a laser-Doppler-spectrophotometry system. Additionally, patient-specific data were collected.
Results
Seven patients were identified. Four patients experienced early complications, two epidermolysis of the distal flap areas, three wound healing disorders, and one partial flap necrosis. Intraoperative perfusion monitoring showed a decline of blood flow after incision of the flap, especially at distal flap site. In case of complications, there were prolonged blood flow declines up to the first postoperative day.
Conclusion
Torqueing the perforator by rotating the flap can cause an impairment in inflow and outflow. If the impairment is prolonged, perfusion-associated complications are possible. The identification of a viable perforator is particularly important. In addition, a conservative postoperative mobilization is necessary to compensate for the impaired and adapting outflow.