• Treffer 2 von 4
Zurück zur Trefferliste

Reinforced Hyaluronic Acid-Based Matrices Promote 3D Neuronal Network Formation

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-318682
  • 3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30–500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers3D neuronal cultures attempt to better replicate the in vivo environment to study neurological/neurodegenerative diseases compared to 2D models. A challenge to establish 3D neuron culture models is the low elastic modulus (30–500 Pa) of the native brain. Here, an ultra-soft matrix based on thiolated hyaluronic acid (HA-SH) reinforced with a microfiber frame is formulated and used. Hyaluronic acid represents an essential component of the brain extracellular matrix (ECM). Box-shaped frames with a microfiber spacing of 200 µm composed of 10-layers of poly(ɛ-caprolactone) (PCL) microfibers (9.7 ± 0.2 µm) made via melt electrowriting (MEW) are used to reinforce the HA-SH matrix which has an elastic modulus of 95 Pa. The neuronal viability is low in pure HA-SH matrix, however, when astrocytes are pre-seeded below this reinforced construct, they significantly support neuronal survival, network formation quantified by neurite length, and neuronal firing shown by Ca\(^{2+}\) imaging. The astrocyte-seeded HA-SH matrix is able to match the neuronal viability to the level of Matrigel, a gold standard matrix for neuronal culture for over two decades. Thus, this 3D MEW frame reinforced HA-SH composite with neurons and astrocytes constitutes a reliable and reproducible system to further study brain diseases.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Dieter Janzen, Ezgi Bakirci, Jessica Faber, Mateo Andrade Mier, Julia Hauptstein, Arindam Pal, Leonard Forster, Jonas Hazur, Aldo R. Boccaccini, Rainer Detsch, Jörg Teßmar, Silvia Budday, Torsten Blunk, Paul D. Dalton, Carmen Villmann
URN:urn:nbn:de:bvb:20-opus-318682
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Institut für Klinische Neurobiologie
Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Healthcare Materials
Erscheinungsjahr:2022
Band / Jahrgang:11
Heft / Ausgabe:21
Aufsatznummer:e2201826
Originalveröffentlichung / Quelle:Advanced Healthcare Materials 2022, 11(21):e2201826. DOI: 10.1002/adhm.202201826
DOI:https://doi.org/10.1002/adhm.202201826
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):3D model systems; Ca\(^{2+}\)-Imaging; astrocytes; cortical neurons; hyaluronic acid; melt electrowriting
Datum der Freischaltung:26.07.2023
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International