• Treffer 1 von 3
Zurück zur Trefferliste

Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-312152
  • Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically‐driven leaf movements. Leaf downward movement caused by hydro‐passive turgor loss reached a maximum withinSalt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically‐driven leaf movements. Leaf downward movement caused by hydro‐passive turgor loss reached a maximum within 2 h. Salt‐driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca\(^{2+}\)) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H\(^{+}\)) pumping, a salt uptake‐dependent cytosolic alkalization, and a return of the apoplast osmolality to pre‐stress levels. Although, transcript numbers of abscisic acid‐ and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H\(^{+}\)/Na\(^{+}\)‐exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na\(^{+}\)) rapidly even under massive salt loads, based on pre‐established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca\(^{2+}\) signaling.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Dorothea Graus, Kunkun Li, Jan M. Rathje, Meiqi Ding, Markus Krischke, Martin J. Müller, Tracey Ann Cuin, Khaled A. S. Al‐Rasheid, Sönke Scherzer, Irene Marten, Kai R. Konrad, Rainer Hedrich
URN:urn:nbn:de:bvb:20-opus-312152
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):New Phytologist
Erscheinungsjahr:2023
Band / Jahrgang:237
Heft / Ausgabe:1
Erste Seite:217
Letzte Seite:231
Originalveröffentlichung / Quelle:New Phytologist 2023, 237(1):217-231. DOI: 10.1111/nph.18501
DOI:https://doi.org/10.1111/nph.18501
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Freie Schlagwort(e):NHX1; NaCl transport; Salt Overly Sensitive pathway; calcium signaling; cytosolic pH; leaf response; osmotic effects; salt stress
Datum der Freischaltung:30.06.2023
Lizenz (Deutsch):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International