• Treffer 2 von 2
Zurück zur Trefferliste

A Biomimetic, Copolymeric Membrane for Cell‐Stretch Experiments with Pulmonary Epithelial Cells at the Air‐Liquid Interface

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-225645
  • Chronic respiratory diseases are among the leading causes of death worldwide, but only symptomatic therapies are available for terminal illness. This in part reflects a lack of biomimetic in vitro models that can imitate the complex environment and physiology of the lung. Here, a copolymeric membrane consisting of poly(ε‐)caprolactone and gelatin with tunable properties, resembling the main characteristics of the alveolar basement membrane is introduced. The thin bioinspired membrane (≤5 μm) is stretchable (up to 25% linear strain) withChronic respiratory diseases are among the leading causes of death worldwide, but only symptomatic therapies are available for terminal illness. This in part reflects a lack of biomimetic in vitro models that can imitate the complex environment and physiology of the lung. Here, a copolymeric membrane consisting of poly(ε‐)caprolactone and gelatin with tunable properties, resembling the main characteristics of the alveolar basement membrane is introduced. The thin bioinspired membrane (≤5 μm) is stretchable (up to 25% linear strain) with appropriate surface wettability and porosity for culturing lung epithelial cells under air–liquid interface conditions. The unique biphasic concept of this membrane provides optimum characteristics for initial cell growth (phase I) and then switch to biomimetic properties for cyclic cell‐stretch experiments (phase II). It is showed that physiologic cyclic mechanical stretch improves formation of F‐actin cytoskeleton filaments and tight junctions while non‐physiologic over‐stretch induces cell apoptosis, activates inflammatory response (IL‐8), and impairs epithelial barrier integrity. It is also demonstrated that cyclic physiologic stretch can enhance the cellular uptake of nanoparticles. Since this membrane offers considerable advantages over currently used membranes, it may lead the way to more biomimetic in vitro models of the lung for translation of in vitro response studies into clinical outcome.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Ali Doryab, Mehmet Berat Taskin, Philipp Stahlhut, Andreas Schröppel, Darcy E. Wagner, Jürgen Groll, Otmar Schmid
URN:urn:nbn:de:bvb:20-opus-225645
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Functional Materials
Erscheinungsjahr:2021
Band / Jahrgang:31
Heft / Ausgabe:10
Aufsatznummer:2004707
Originalveröffentlichung / Quelle:Advanced Functional Materials 2021, 31(10):2004707. DOI: 10.1002/adfm.202004707
DOI:https://doi.org/10.1002/adfm.202004707
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):alveolar‐capillary barrier; cyclic mechanical stretch; hybrid polymers; in vitro cell‐stretch model; tunable ultra‐thin biphasic membrane
Datum der Freischaltung:27.10.2021
Lizenz (Deutsch):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International