• Treffer 18 von 26
Zurück zur Trefferliste

The green light gap: a window of opportunity for optogenetic control of stomatal movement

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-293724
  • Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet‐to‐blue and the red‐to‐far‐red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limitedGreen plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet‐to‐blue and the red‐to‐far‐red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL‐activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL‐sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild‐type plants. Given that crop plants in controlled‐environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light‐emitting diodes), GL signals can be used as a remote‐control signal that controls stomatal transpiration and water consumption.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Jeffrey J. Jones, Shouguang Huang, Rainer Hedrich, Christoph‐Martin Geilfus, M. Rob G. Roelfsema
URN:urn:nbn:de:bvb:20-opus-293724
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):New Phytologist
Erscheinungsjahr:2022
Band / Jahrgang:236
Heft / Ausgabe:4
Erste Seite:1237
Letzte Seite:1244
Originalveröffentlichung / Quelle:New Phytologist 2022, 236(4):1237-1244. DOI: 10.1111/nph.18451
DOI:https://doi.org/10.1111/nph.18451
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Freie Schlagwort(e):Chl; anion channel; channelrhodopsin; guard cell; ion channel; light‐gated; membrane potential; phototropin
Datum der Freischaltung:30.06.2023
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International