• search hit 6 of 6
Back to Result List

Biochemical and Structural Basis for the Moonlighting Function of Gephyrin

Biochemische und Strukturelle Basis für die duale Funktionalität von Gephyrin

Please always quote using this URN: urn:nbn:de:bvb:20-opus-143077
  • Neurons are specialized cells dedicated to transmit the nerve impulses throughout the human body across specialized structures called synapses. At the synaptic terminals, a crosstalk between multiple macromolecules regulates the structure and function of the presynaptic nerve endings and the postsynaptic recipient sites. Gephyrin is the central organizer at inhibitory postsynaptic specializations and plays a crucial role in the organization of these structures by anchoring GABAA receptors (GABAAR) and glycine receptors (GlyR) to theNeurons are specialized cells dedicated to transmit the nerve impulses throughout the human body across specialized structures called synapses. At the synaptic terminals, a crosstalk between multiple macromolecules regulates the structure and function of the presynaptic nerve endings and the postsynaptic recipient sites. Gephyrin is the central organizer at inhibitory postsynaptic specializations and plays a crucial role in the organization of these structures by anchoring GABAA receptors (GABAAR) and glycine receptors (GlyR) to the postsynaptic membrane. This 93 kDa protein features an N-terminal G domain and a C-terminal E domain and the latter interacts directly with the intracellular loop between transmembrane helices 3 and 4 of certain subunits of the GlyRs and GABAARs. Biochemical and structural analyses have already provided valuable insights into the gephyrin-GlyR interaction. Interestingly, biochemical studies on the gephyrin-GABAAR interaction demonstrated that the GABAARs also depend on the same binding site as the GlyRs for the interaction with the gephyrin, but the molecular basis for this receptor specific interaction of gephyrin was still unknown. Co-crystal structures of GephE-GABAAR α3- derived peptides with supporting biochemical data presented in this study deciphered the receptor-specific interactions of gephyrin in atomic detail. In its moonlighting function, gephyrin also catalyzes the terminal step of the evolutionarily conserved molybdenum cofactor biosynthesis. Molybdenum, an essential transition element has to be complexed with a pterin-based cofactor resulting in the formation of the molybdenum cofactor (Moco). Moco is an essential component at the active site of all molybdenum-containing enzymes with the exception of nitrogenase. Mutations in enzymes involved in this pathway lead to a rare yet severe disease called Moco deficiency, which manifest itself in severe neurodevelopmental abnormalities and early childhood death. Moco biosynthesis follows a complex multistep pathway, where in the penultimate step, the N-terminal G domain of gephyrin activates the molybdopterin to form an adenylated molybdopterin intermediate. In the terminal step, this intermediate is then transferred to the C-terminal E domain of gephyrin, which catalyzes the metal insertion and deadenylation reaction to form active Moco. Previous biochemical and structural studies provided valuable insights into the penultimate step of the Moco biosynthesis but the terminal step remained elusive. Through the course of my dissertation, I crystallized the C-terminal E domain in the apo-form as well as in complex with ADP and AMP. These structures shed lightonto the deadenylation reaction and the formation of a ternary E-domain-ADP-Mo/W complex and thus provide structural insight into the metal insertion mechanism. Moreover, the structures also provided molecular insights into a mutation leading to Moco deficiency. Finally, ternary complexes of GephE, ADP and receptor-derived peptides provided first clues regarding the integration of gephyrin’s dual functionality. In summary, during the course of the dissertation I was able to derive high resolution structural insights into the interactions between gephyrin and GABAARs, which explain the receptor-specific interaction of gephyrin and, furthermore, these studies can be extended in the future to understand GABAAR subunit-specific interactions of gephyrin. Finally, the understanding of Moco biosynthesis shed light on the molecular basis of the fatal Moco deficiency.show moreshow less
  • Neurone sind spezialisierte Zellen, die über die Synapsen Nervenimpulse im menschlichen Körper übertragen. An den synaptischen Enden reguliert ein Netzwerk aus einer Vielzahl von Makromolekülen die Struktur und die Funktion der präsynaptischen Nervenenden und der postsynaptischen Kontaktstellen. Gephyrin ist der Hauptorganisator an inhibitorischen, postsynaptischen Spezialisierungen und spielt durch die Verankerung von GABAA-Rezeptoren (GABAAR) und Glycinrezeptoren (GlyR) in der postsynaptischen Membran eine zentrale Rolle für den AufbauNeurone sind spezialisierte Zellen, die über die Synapsen Nervenimpulse im menschlichen Körper übertragen. An den synaptischen Enden reguliert ein Netzwerk aus einer Vielzahl von Makromolekülen die Struktur und die Funktion der präsynaptischen Nervenenden und der postsynaptischen Kontaktstellen. Gephyrin ist der Hauptorganisator an inhibitorischen, postsynaptischen Spezialisierungen und spielt durch die Verankerung von GABAA-Rezeptoren (GABAAR) und Glycinrezeptoren (GlyR) in der postsynaptischen Membran eine zentrale Rolle für den Aufbau dieser Strukturen. Dieses 93 kDa Protein enthält eine N-terminale G-Domäne (GephG) und eine C-terminale E-Domäne (GephE), wobei letztere direkt mit der intrazellulären unstrukturierten Region zwischen Transmembranhelices 3 und 4 bestimmter Untereinheiten der GlyR und GABAAR interagiert. Biochemische und strukturelle Analysen lieferten bereits wertvolle Erkenntnisse über die Gephyrin-GlyR Interaktion. Interessanterweise zeigten Versuche zur Gephyrin-GABAAR Interaktion, dass GABAARs die gleiche Bindungsstelle auf Gephyrin benutzen wie GlyRs, wobei die molekulare Basis für diese Interaktion nicht bekannt war. In dieser Arbeit zeige ich Co-Kristallstrukturen von GephE-GABAARα3 sowie unterstützende biochemische Daten, die die atomaren Details der rezeptorspezifischen Interaktionen von Gephyrin entschlüsseln. Als zweite Funktion katalysiert Gephyrin den terminalen Schritt der evolutionär konservierten Molybdän Cofaktor Biosynthese. Dabei muss das essentielle Übergangselement Molybdän mit einem Pterin-basierten Cofaktor komplexiert werden, um den Molybdän Cofaktor (Moco) zu bilden. Moco ist essentieller Bestandteil im aktiven Zentrum aller Molybdän-enthaltenden Enzyme mit Ausnahme der Nitrogenase. Mutationen in Enzymen, die in die Molybdän Cofaktor Biosynthese involviert sind, verursachen eine Moco Defizienz, eine seltene, jedoch schwere Erkrankung, die sich durch schwere neurologische Entwicklungsstörungen und Tod im frühen Kindesalter äußert. Die Moco Biosynthese folgt einem komplexen mehrstufigen Ablauf. Im vorletzten Schritt adenyliert GephG das Molybdopterin und ein Zwischenprodukt entsteht. Im letzten Schritt wird dieses Zwischenprodukt auf GephE übertragen, das die Insertion des Metalls und die Deadenylierungsreaktion katalysiert, wodurch der aktive Moco entsteht. Frühere biochemische und strukturelle Studien brachten wertvolle Erkenntnisse über den vorletzten Schritt der Moco Biosynthese, aber die Kenntnisse über den letzten Schritt blieben vage. Während meiner Dissertation kristallisierte ich GephE in der apo-Form sowie im Komplex mit ADP oder AMP. Diese Strukturen gaben Aufschluss über die Deadenylierungsreaktion und die Formation eines ternären GephE-ADP-Mo/W Komplexes und gewährten so einen strukturellen Einblick in den Mechanismus der Metallinsertion. Darüber hinaus ermöglichten die Strukturen eine Mutation, die zu Moco Mangel führt, auf molekularer Ebene zu verstehen. Schließlich lieferten ternäre Komplexe aus GephE, ADP und von Rezeptoren abgeleiteten Peptiden ersten Aufschluss bezüglich der Verflechtung von Gephyrins dualer Funktion. Zusammenfassend konnte ich während der Dissertation hochauflösende strukturelle Einblicke in den Komplex aus GephE und GABAAR α3 Untereineinheit gewinnen, die die rezeptorspezifische Interaktion von Gephyrin erklären. Weiterhin können diese Studien in der Zukunft ausgeweitet werden, um die GABAAR-untereinheitenspezifische Interaktion mit Gephyrin zu verstehen. Schließlich erlauben die Studien zur Moco Biosynthese die tödliche Moco Defizienz auf molekularer Ebene zu verstehen.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Vikram Babu KasaragodGND
URN:urn:nbn:de:bvb:20-opus-143077
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Referee:Prof. Dr. Hermann Schindelin
Date of final exam:2016/12/06
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-14307
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
GND Keyword:Gephyrin; Moco biosynthesis
Release Date:2017/06/13
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen