• search hit 2 of 2
Back to Result List

Intrazelluläre Signaltransduktionsprozesse bei der Öffnung des Perineuriums

Intracellular signaling pathways in permeabilisation of the perineurial barrier

Please always quote using this URN: urn:nbn:de:bvb:20-opus-132949
  • Fragestellung: Experimentelle Ansätze zur selektiven Blockade von nozizeptiven Neuronen sind in vivo stark durch die Diffusionsbarriere des Perineuriums eingeschränkt, die das Vordringen von hydrophilen Substanzen zu ihrem Wirkort verhindert. Entscheidend für diese Barrierefunktion sind Tight Junctions zwischen Perineuralzellen, an deren Ausbildung das Transmembranprotein Claudin-1 beteiligt ist. In Vorarbeiten wurde gezeigt, dass die periphere Injektion einer 10 % NaCl-Lösung zur vorübergehenden Öffnung des Perineuriums führt. DabeiFragestellung: Experimentelle Ansätze zur selektiven Blockade von nozizeptiven Neuronen sind in vivo stark durch die Diffusionsbarriere des Perineuriums eingeschränkt, die das Vordringen von hydrophilen Substanzen zu ihrem Wirkort verhindert. Entscheidend für diese Barrierefunktion sind Tight Junctions zwischen Perineuralzellen, an deren Ausbildung das Transmembranprotein Claudin-1 beteiligt ist. In Vorarbeiten wurde gezeigt, dass die periphere Injektion einer 10 % NaCl-Lösung zur vorübergehenden Öffnung des Perineuriums führt. Dabei kommt es zur Freisetzung der Matrix-Metalloproteinase 9 (MMP9), die über Interaktion mit dem low density lipoprotein receptor-related protein 1 (LRP-1) Rezeptor eine Konzentrationsabnahme von Claudin-1 bewirkt. Durch perineurale Koinjektion von 10 % NaCl mit dem Opioidagonisten DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-Enkephalin) bzw. Tetrodotoxin ist damit im Verhaltensexperiment ein analgetischer Effekt auszulösen. Beobachtungen an der Blut-Hirn-Schranke konnten eine Öffnung über Interaktion von tPA mit LRP-1 zeigen. In dieser Studie sollten die Barriereöffnung sowie intrazelluläre Signalprozesse, die an der Öffnung des Perineuriums beteiligt sind, unter verschiedenen Bedingungen (hypertone NaCl-Lösung, MMP9 und tPA) charakterisiert werden. Methodik: MMP9, 10 % NaCl-Lösung, tPA oder Erk Inhibitor (PD 98059) wurden mit Hilfe eines Nervenstimulators perineural an den N. ischiadicus von Wistar-Ratten injiziert. Danach wurden zu verschiedenen Zeitpunkten Nerven entnommen, um im Western Blot die Claudin-1 Expression in der Membranfraktion sowie die Phosphorylierung der intrazellulären Signalproteine Erk und Akt darzustellen. Nach perineuraler Injektion von tPA wurden in Schmerzverhaltenstests die Barriere öffnenden Wirkungen und immunhistochemisch und im Western Blot Auswirkungen auf die Konzentration von Claudin-1 und pErk untersucht. Ergebnisse: Nach peripherer Injektion der 10 % NaCl-Lösung war über einen Zeitraum von 5-120 min eine Reduktion von Claudin-1 in der Membranfraktion und eine verstärkte Phosphorylierung von Erk nicht aber von Akt zu beobachten. Die Konzentrationszunahme von pErk wurde dabei nur im Perineurium, nicht im Nerveninneren nachgewiesen. Ebenso führte die periphere Injektion von MMP9 zu reduziertem Claudin-1 und einer verstärkten Phosphorylierung von Erk In Verhaltensexperimenten konnte gezeigt werden, dass die Injektion des Erk-Inhibitors PD98059 dosisabhängig zur Aufhebung der Antinozizeption führte, die nach Gabe von DAMGO in 10 % NaCl zu beobachten war. PD98059 blockierte den Abbau von Claudin-1 nach Injektion von 10 % NaCl. Perineurale Koinjektion von aktivem tPA (als LRP-1 Ligand) und DAMGO ermöglicht ebenfalls antinozizeptive Effekte. Immunhistochemisch und im Western Blot zeigte sich bei verschiedenen Dosierungen von aktivem tPA eine Konzentrationsabnahme von Claudin-1, eine verstärkte Phosphorylierung von Erk war jedoch nicht nachzuweisen. Nach Injektion von enzymatisch inaktiviertem tPA konnte nach einer Stunde keine Claudin-1 Konzentrationsänderung beobachtet werden. Interpretation: Nach Injektion von 10 % NaCl kommt es zur verstärkten Phosphorylierung von Erk, die sich durch eine Interaktion der MMP9 Hemopexin- Domäne (MMP9-PEX) mit dem LRP-1 Rezeptor erklären lässt. Folge dieser Signalprozesse ist eine Konzentrationsabnahme von Claudin-1 und eine erhöhte Permeabilität des Perineuriums. Ähnlich zeigen erste Experimente auch nach Injektion von tPA eine Konzentrationsabnahme von Claudin. Damit bietet LRP-1 einen innovativen Angriffspunkt, um auch in vivo durch Öffnung des Perineuriums neue hydrophile Medikamente zur selektiven Blockade von Schmerzfasern zu nutzen.show moreshow less
  • Introduction: Approaches for the selective blockade of nociceptive neurons are limited in-vivo by the perineurial barrier, which prevents delivery of hydrophilic drugs to the peripheral nerve. The perineurium is composed of a basal membrane with a layer of perineurial cells and tight junctions limiting paracellular permeability. The tight junction protein claudin-1 is expressed in the perineurium and associated with permeability changes. Perineurial injection of hypertonic saline (HTS) has been used to increase perineurial permeability.Introduction: Approaches for the selective blockade of nociceptive neurons are limited in-vivo by the perineurial barrier, which prevents delivery of hydrophilic drugs to the peripheral nerve. The perineurium is composed of a basal membrane with a layer of perineurial cells and tight junctions limiting paracellular permeability. The tight junction protein claudin-1 is expressed in the perineurium and associated with permeability changes. Perineurial injection of hypertonic saline (HTS) has been used to increase perineurial permeability. Injection of HTS leads to a release of the matrix metalloproteinase 9 (MMP9), which induces down-regulation of claudin-1 by binding to the low density lipoprotein receptor-related protein1 (LRP-1). Perisciatic injection of HTS together with the opioid-receptor agonist DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-Enkephalin) results in a dose-dependent antinociceptive effect. Studies of the blood-brain-barrier suggest a barrier-opening effect of tPA by binding to LRP-1. In this study, we characterize intracellular signaling pathways, which are involved in opening the perineurial barrier after application of different agents (HTS, MMP9 and tPA). Methods: MMP9, HTS, tPA or Erk-Inhibitor PD98059 were injected perisciatically in Wistar rats. Sciatic nerves were harvested after indicated time points and used for Western Blotting or Immunofluorescence experiments. Results: Perisciatic injection of HTS transiently enhanced Erk phosphorylation in the sciatic nerve beginning 5 min after application. Erk protein expression remained unchanged. The increase of Erk phosphorylation was confined to the perineurium. Application of recombinant MMP9 perisciatically also resulted in phosphorylation of ERK within the first 30 min. Perisciatic injection of the Erk inhibitor PD98059 dose-dependently and almost completely blocked the ability of HTS to facilitate DAMGO-induced increases in mechanical nociceptive thresholds and blocked the reduction in claudin-1 content after HTS injection at the sciatic nerve. In contrast, neither perineurial treatment with HTS nor MMP9 changed the phosphorylation of the Akt kinase in the perineurium. Perisciatic injection of tPA (as a LRP-1 ligand) and DAMGO also resulted in an increase of mechanical nociceptive thresholds. Immunofluorescence and Western Blots revealed a down-regulation of claudin-1 after injection of different concentrations of tPA. However, injection of tPA did not result in an enhanced Erk phosphorylation. No change in claudin-1 concentration was observed after perisciatic injection of enzymatic inactive tPA. Discussion: Perisciatic injection of HTS results in an increased phosphorylation of Erk. This seems to be mediated by a release of MMP9 and binding of its hemopexin domain to LRP-1. Activation of the Erk signaling pathway leads to a down-regulation of claudin-1 and an increased permeability of the perineurial barrier. Similarly, injection of tPA (a known LRP-1 agonist) also results in a decreased claudin-1 concentration. Our findings reveal LRP-1 as a unique molecular target to allow for specific antinociception by controlled opening of the perineurial barrier.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Clemens-Alexander Böcker
URN:urn:nbn:de:bvb:20-opus-132949
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Medizinische Fakultät
Faculties:Medizinische Fakultät / Klinik und Poliklinik für Anästhesiologie (ab 2004)
Referee:Prof. Dr. Alexander Brack
Date of final exam:2016/04/26
Language:German
Year of Completion:2014
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
GND Keyword:peripherer Nerv; Schmerz
Tag:Claudin-1; Erk; LRP1; Perineurium; rtPA
Erk; LRP1; claudin-1; perineurium
Release Date:2016/05/20
Licence (German):License LogoDeutsches Urheberrecht