• Treffer 1 von 1
Zurück zur Trefferliste

Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-128246
  • Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young's modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embeddingMechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young's modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of alpha-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (approximate to 40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Matthias Mayer, Raman Rabindranath, Juliane Börner, Eva Hörner, Alexander Bentz, Josefina Salgado, Hong Han, Holger Böse, Jörn Probst, Mikhail Shamonin, Gereth J. Monkman, Günther Schlunck
URN:urn:nbn:de:bvb:20-opus-128246
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Augenklinik und Poliklinik
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):PLOS ONE
ISSN:1932-6203
Erscheinungsjahr:2013
Band / Jahrgang:8
Heft / Ausgabe:10
Seitenangabe:e76196
Originalveröffentlichung / Quelle:PLoS ONE 8(10): e76196. doi:10.1371/journal.pone.0076196
DOI:https://doi.org/10.1371/journal.pone.0076196
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 611 Menschliche Anatomie, Zytologie, Histologie
Freie Schlagwort(e):adhesion; behavior; elastic magnetic-materials; hydrogels; magnetorheological elastomers; mechanics; mechanotransduction; smooth muscle actin; stiffness; tension
Datum der Freischaltung:30.03.2016
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung