Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 8 von 13
Zurück zur Trefferliste

The temperature dependence of gradient system response characteristics

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-206212
  • Purpose: The gradient system transfer function (GSTF) characterizes the frequency transfer behavior of a dynamic gradient system and can be used to correct non‐Cartesian k‐space trajectories. This study analyzes the impact of the gradient coil temperature of a 3T scanner on the GSTF. Methods: GSTF self‐ and B\(_0\)‐cross‐terms were acquired for a 3T Siemens scanner (Siemens Healthcare, Erlangen, Germany) using a phantom‐based measurement technique. The GSTF terms were measured for various temperature states up to 45°C. The gradient coilPurpose: The gradient system transfer function (GSTF) characterizes the frequency transfer behavior of a dynamic gradient system and can be used to correct non‐Cartesian k‐space trajectories. This study analyzes the impact of the gradient coil temperature of a 3T scanner on the GSTF. Methods: GSTF self‐ and B\(_0\)‐cross‐terms were acquired for a 3T Siemens scanner (Siemens Healthcare, Erlangen, Germany) using a phantom‐based measurement technique. The GSTF terms were measured for various temperature states up to 45°C. The gradient coil temperatures were measured continuously utilizing 12 temperature sensors which are integrated by the vendor. Different modeling approaches were applied and compared. Results: The self‐terms depend linearly on temperature, whereas the B0‐cross‐term does not. Effects induced by thermal variation are negligible for the phase response. The self‐terms are best represented by a linear model including the three gradient coil sensors that showed the maximum temperature dependence for the three axes. The use of time derivatives of the temperature did not lead to an improvement of the model. The B\(_0\)‐cross‐terms can be modeled by a convolution model which considers coil‐specific heat transportation. Conclusion: The temperature dependency of the GSTF was analyzed for a 3T Siemens scanner. The self‐ and B0‐cross‐terms can be modeled using a linear and convolution modeling approach based on the three main temperature sensor elements.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Manuel StichORCiD, Christiane Pfaff, Tobias WechORCiD, Anne SlawigORCiD, Gudrun Ruyters, Andrew Dewdney, Ralf Ringler, Herbert Köstler
URN:urn:nbn:de:bvb:20-opus-206212
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik)
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Magnetic Resonance in Medicine
Erscheinungsjahr:2020
Band / Jahrgang:83
Seitenangabe:1519-1527
Originalveröffentlichung / Quelle:Magnetic Resonance in Medicine 2020;83:1519–1527. DOI: 10.1002/mrm.28013
DOI:https://doi.org/10.1002/mrm.28013
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):gradient impulse response function; gradient system respose; gradient system trasfer function; temperature dependency; thermal variation
Datum der Freischaltung:21.09.2020
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International