• Treffer 1 von 2
Zurück zur Trefferliste

Protein Interaction Networks-More Than Mere Modules

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-68426
  • It is widely believed that the modular organization of cellular function is reflected in a modular structure of molecular networks. A common view is that a ‘‘module’’ in a network is a cohesively linked group of nodes, densely connected internally and sparsely interacting with the rest of the network. Many algorithms try to identify functional modules in protein-interaction networks (PIN) by searching for such cohesive groups of proteins. Here, we present an alternative approach independent of any prior definition of what actually constitutes aIt is widely believed that the modular organization of cellular function is reflected in a modular structure of molecular networks. A common view is that a ‘‘module’’ in a network is a cohesively linked group of nodes, densely connected internally and sparsely interacting with the rest of the network. Many algorithms try to identify functional modules in protein-interaction networks (PIN) by searching for such cohesive groups of proteins. Here, we present an alternative approach independent of any prior definition of what actually constitutes a ‘‘module’’. In a self-consistent manner, proteins are grouped into ‘‘functional roles’’ if they interact in similar ways with other proteins according to their functional roles. Such grouping may well result in cohesive modules again, but only if the network structure actually supports this. We applied our method to the PIN from the Human Protein Reference Database (HPRD) and found that a representation of the network in terms of cohesive modules, at least on a global scale, does not optimally represent the network’s structure because it focuses on finding independent groups of proteins. In contrast, a decomposition into functional roles is able to depict the structure much better as it also takes into account the interdependencies between roles and even allows groupings based on the absence of interactions between proteins in the same functional role. This, for example, is the case for transmembrane proteins, which could never be recognized as a cohesive group of nodes in a PIN. When mapping experimental methods onto the groups, we identified profound differences in the coverage suggesting that our method is able to capture experimental bias in the data, too. For example yeast-two-hybrid data were highly overrepresented in one particular group. Thus, there is more structure in protein-interaction networks than cohesive modules alone and we believe this finding can significantly improve automated function prediction algorithms.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Stefan Pinkert, Joerg Schultz, Joerg Reichardt
URN:urn:nbn:de:bvb:20-opus-68426
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Sprache der Veröffentlichung:Englisch
Erscheinungsjahr:2010
Originalveröffentlichung / Quelle:PLOS COMPUTATIONAL BIOLOGY (2010) 6, 1, DOI: 10.1371/journal.pcbi.1000659
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Normierte Schlagworte (GND):Netzwerk
Freie Schlagwort(e):protein-interaction networks
Datum der Freischaltung:02.03.2012
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung