• Treffer 2 von 2
Zurück zur Trefferliste

Designing Outside the Box: Unlocking the Geometric Freedom of Melt Electrowriting using Microscale Layer Shifting

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-217974
  • Melt electrowriting, a high‐resolution additive manufacturing technology, has so far been developed with vertical stacking of fiber layers, with a printing trajectory that is constant for each layer. In this work, microscale layer shifting is introduced through deliberately offsetting the printing trajectory for each printed layer. Inaccuracies during the printing of sinusoidal walls are corrected via layer shifting, resulting in accurate control of their geometry and mechanical properties. Furthermore, more substantial layer shifting allowsMelt electrowriting, a high‐resolution additive manufacturing technology, has so far been developed with vertical stacking of fiber layers, with a printing trajectory that is constant for each layer. In this work, microscale layer shifting is introduced through deliberately offsetting the printing trajectory for each printed layer. Inaccuracies during the printing of sinusoidal walls are corrected via layer shifting, resulting in accurate control of their geometry and mechanical properties. Furthermore, more substantial layer shifting allows stacking of fiber layers in a horizontal manner, overcoming the electrostatic autofocusing effect that favors vertical layer stacking. Novel nonlinear geometries, such as overhangs, wall texturing and branching, and smooth and abrupt changes in printing trajectory are presented, demonstrating the flexibility of the layer shifting approach beyond the state‐of‐the‐art. The practice of microscale layer shifting for melt electrowriting enables more complex geometries that promise to have a profound impact on the development of products in a broad range of applications.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Ievgenii Liashenko, Andrei Hrynevich, Paul D. Dalton
URN:urn:nbn:de:bvb:20-opus-217974
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Materials
Erscheinungsjahr:2020
Band / Jahrgang:32
Heft / Ausgabe:28
Aufsatznummer:2001874
Originalveröffentlichung / Quelle:Advanced Materials 2020, 32(28):2001874. DOI: 10.1002/adma.202001874
DOI:https://doi.org/10.1002/adma.202001874
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
Freie Schlagwort(e):3D printing; additive manufacturing; biomaterials; electrohydrodynamics; melt electrospinning writing
Datum der Freischaltung:18.08.2021
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International