• Treffer 3 von 5
Zurück zur Trefferliste

Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-134595
  • Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated.Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Niko Heddergott, Timothy Krüger, Sujin B. Babu, Ai Wei, Erik Stellamanns, Sravanti Uppaluri, Thomas Pfohl, Holger Stark, Markus Engstler
URN:urn:nbn:de:bvb:20-opus-134595
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):PLoS Pathogens
Erscheinungsjahr:2012
Band / Jahrgang:8
Heft / Ausgabe:11
Seitenangabe:e1003023
Originalveröffentlichung / Quelle:PLoS Pathogens 8(11): e1003023. doi:10.1371/journal.ppat.1003023
DOI:https://doi.org/10.1371/journal.ppat.1003023
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):flagellar; hydrodynamics; model; motility; multiparticle collision dynamics; propulsion; simulation; solvent; spiroplasma; viscosity
Datum der Freischaltung:09.11.2017
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung