• Treffer 2 von 283
Zurück zur Trefferliste

Deep neural network regression for normalized digital surface model generation with Sentinel-2 imagery

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-349424
  • In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to deriveIn recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7%.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Konstantin MüllerORCiD, Robert LeppichORCiD, Christian Geiß, Vanessa BorstORCiD, Patrick Aravena Pelizari, Samuel KounevORCiD, Hannes TaubenböckORCiD
URN:urn:nbn:de:bvb:20-opus-349424
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Mathematik und Informatik / Institut für Informatik
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN:1939-1404
Erscheinungsjahr:2023
Band / Jahrgang:16
Seitenangabe:8508-8519
Originalveröffentlichung / Quelle:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2023) 16:8508-8519. DOI: 10.1109/JSTARS.2023.3297710
DOI:https://doi.org/10.1109/JSTARS.2023.3297710
Allgemeine fachliche Zuordnung (DDC-Klassifikation):0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Freie Schlagwort(e):Deep learning; multiscale encoder; sentinel; surface model
Datum der Freischaltung:18.04.2024
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International