• search hit 9 of 75
Back to Result List

The platelet collagen receptor GPVI is cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 molecular scissors

Please always quote using this URN: urn:nbn:de:bvb:20-opus-284468
  • The platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a ‘molecular scissor’ that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging asThe platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a ‘molecular scissor’ that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging as regulators of ADAM10 substrate specificity. Human platelets express Tspan14, Tspan15 and Tspan33, but which of these regulates GPVI cleavage remains unknown. To address this, CRISPR/Cas9 knockout human cell lines were generated to show that Tspan15 and Tspan33 enact compensatory roles in GPVI cleavage, with Tspan15 bearing the more important role. To investigate this mechanism, a series of Tspan15 and GPVI mutant expression constructs were designed. The Tspan15 extracellular region was found to be critical in promoting GPVI cleavage, and appeared to achieve this by enabling ADAM10 to access the cleavage site at a particular distance above the membrane. These findings bear implications for the regulation of cleavage of other ADAM10 substrates, and provide new insights into post-translational regulation of the clinically relevant GPVI protein.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Chek Ziu Koo, Alexandra L. Matthews, Neale Harrison, Justyna Szyroka, Bernhard Nieswandt, Elizabeth E. Gardiner, Natalie S. Poulter, Michael G. Tomlinson
URN:urn:nbn:de:bvb:20-opus-284468
Document Type:Journal article
Faculties:Fakultät für Biologie / Rudolf-Virchow-Zentrum
Medizinische Fakultät / Institut für Experimentelle Biomedizin
Language:English
Parent Title (English):International Journal of Molecular Sciences
ISSN:1422-0067
Year of Completion:2022
Volume:23
Issue:5
Article Number:2440
Source:International Journal of Molecular Sciences (2022) 23:5, 2440. https://doi.org/10.3390/ijms23052440
DOI:https://doi.org/10.3390/ijms23052440
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:ADAM10; GPVI; TspanC8; metalloproteinase; platelet; shedding; tetraspanin
Release Date:2023/07/14
Date of first Publication:2022/02/23
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International