Institut für Experimentelle Biomedizin
Refine
Has Fulltext
- yes (95)
Is part of the Bibliography
- yes (95)
Year of publication
Document Type
- Journal article (71)
- Doctoral Thesis (23)
- Report (1)
Keywords
- platelet (11)
- platelets (11)
- ischemic stroke (8)
- LASP1 (7)
- atherosclerosis (6)
- Arteriosklerose (5)
- Thrombozyt (5)
- megakaryocytes (5)
- thrombo-inflammation (5)
- Atherosklerose (4)
Institute
- Institut für Experimentelle Biomedizin (95)
- Rudolf-Virchow-Zentrum (33)
- Graduate School of Life Sciences (16)
- Neurologische Klinik und Poliklinik (9)
- Theodor-Boveri-Institut für Biowissenschaften (9)
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (7)
- Medizinische Klinik und Poliklinik I (5)
- Medizinische Klinik und Poliklinik II (5)
- Physikalisches Institut (4)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (3)
Sonstige beteiligte Institutionen
Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and β1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.
Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation
(2021)
Platelets are produced by bone marrow megakaryocytes through cytoplasmic protrusions, named native proplatelets (nPPT), into blood vessels. Proplatelets also refer to protrusions observed in megakaryocyte culture (cPPT) that are morphologically different. Contrary to cPPT, the mechanisms of nPPT formation are poorly understood. We show here in living mice that nPPT elongation is in equilibrium between protrusive and retraction forces mediated by myosin-IIA. We also found, using WT and β1-tubulin-deficient mice, that microtubule behavior differs between cPPT and nPPT, being absolutely required in vitro, while less critical in vivo. Remarkably, microtubule depolymerization in myosin-deficient mice did not affect nPPT elongation. We then calculated that blood Stokes'forces may be sufficient to promote nPPT extension, independently of myosin and microtubules. Together, we propose a new mechanism for nPPT extension that might explain contradictions between severely affected cPPT production and moderate platelet count defects in some patients and animal models.
In acute ischemic stroke due to large vessel occlusion (LVO) infarcts rapidly grow into the penumbra, which represents dysfunctional, but still viable brain tissue amenable to rescue by vessel recanalization. However, infarct progression and/or delayed patient presentation are serious and frequent limitations of this so far only acute therapy. Thus, a major goal of translational research is to “freeze” the penumbra already during LVO (before opening the vessel) and thereby extend individual time windows for non-futile recanalization. We used the filament occlusion model of the middle cerebral artery (MCAO) in mice and assessed progressive infarction under occlusion at 2, 3, and 4 h after onset. We show that blocking the activatory platelet receptor glycoprotein (GP)VI substantially delayed progressive neocortical infarction compared to isotype control antibody treated mice. Moreover, the local vascular recruitment of infiltrating neutrophils and T-cells was mitigated. In conclusion, our experimental data support ongoing clinical trials blocking platelet GPVI in acute ischemic stroke.
The two main collagen receptors on platelets, GPVI and integrin α2β1, play an important role for the recognition of exposed collagen at sites of vessel injury, which leads to platelet activation and subsequently stable thrombus formation. Both receptors are already expressed on megakaryocytes, the platelet forming cells within the bone marrow. Megakaryocytes are in permanent contact with collagen filaments in the marrow cavity and at the basal lamina of sinusoids without obvious preactivation. The role of both collagen receptors for megakaryocyte maturation and thrombopoiesis is still poorly understood. To investigate the function of both collagen receptors, we generated mice that are double deficient for Gp6 and Itga2. Flow cytometric analyses revealed that the deficiency of both receptors had no impact on platelet number and led to the expected lack in GPVI responsiveness. Integrin activation and degranulation ability was comparable to wildtype mice. By immunofluorescence microscopy, we could demonstrate that both wildtype and double-deficient megakaryocytes were overall normally distributed within the bone marrow. We found megakaryocyte count and size to be normal, the localization within the bone marrow, the degree of maturation, as well as their association to sinusoids were also unaltered. However, the contact of megakaryocytes to collagen type I filaments was decreased at sinusoids compared to wildtype mice, while the interaction to type IV collagen was unaffected. Our results imply that GPVI and α2β1 have no influence on the localization of megakaryocytes within the bone marrow, their association to the sinusoids or their maturation. The decreased contact of megakaryocytes to collagen type I might at least partially explain the unaltered platelet phenotype in these mice, since proplatelet formation is mediated by these receptors and their interaction to collagen. It is rather likely that other compensatory signaling pathways and receptors play a role that needs to be elucidated.
The implementation of high‐throughput sequencing (HTS) technologies in research and diagnostic laboratories has linked many new genes to rare bleeding, thrombotic, and platelet disorders (BTPD), and revealed multiple genetic variants linked to those disorders, many of them being of uncertain pathogenicity when considering the accepted evidence (variant consequence, frequency in control datasets, number of reported patients, prediction models, and functional assays). The sequencing effort has also resulted in resources for gathering disease‐causing variants associated with specific genes, but for BTPD, such well‐curated databases exist only for a few genes. On the other hand, submissions by individuals or diagnostic laboratories to the variant database ClinVar are hampered by the lack of a submission process tailored to capture the specific features of hemostatic diseases. As we move toward the implementation of HTS in the diagnosis of BTPD, the Scientific and Standardization Committee for Genetics in Thrombosis and Haemostasis has developed and tested a REDCap‐based interface, aimed at the community, to submit curated genetic variants for diagnostic‐grade BTPD genes. Here, we describe the use of the interface and the initial submission of 821 variants from 30 different centers covering 14 countries. This open‐access variant resource will be shared with the community to improve variant classification and regular bulk data transfer to ClinVar.
Atherosklerose ist eine chronisch inflammatorische Erkrankung der Gefäßwände, bei der sowohl die angeborene als auch die erworbene Immunantwort beteiligt ist. Von Monozyten abstammende Makrophagen spielen eine Schlüsselrolle bei der Entstehung atherosklerotischer Läsionen. Durch die Aufnahme modifizierte Lipide (z.B. oxLDL) werden sie zu Schaumzellen, sezernieren inflammatorische Zytokine und befeuern somit die vaskuläre Entzündungsreaktion. Makrophagen können jedoch auch schützende Funktionen wahrnehmen, bspw. durch die antiinflammatorische Aufnahme apoptotischer Zellen, die Efferozytose. Um den Einfluss CD8+ T-Zellen auf Makrophagen zu bestimmen, wurde ein in vitro Model gewählt, in dem aktivierte CD8+ T-Zellen mit aus Knochenmark isolierten Makrophagen kokultiviert wurden. Zunächst konnte gezeigt werden, dass CD8+ T-Zellen die oxLDL Aufnahme und Schaumzellbildung der Makrophagen fördern, assoziiert mit der gesteigerten Expression des oxLDL Rezeptors CD36 und verminderten Expression des reversen Cholesterintransporters ABCA1. Zusätzlich reduzierten CD8+ T-Zellen die Phagozytose apoptotischer Zellen und die Sekretion des antiinflammatorischen Zytokins IL-10 als Antwort auf die Aufnahme apoptotischer Zellen, was auf eine verminderte Efferozytose hindeutet. Zudem förderten CD8+ T-Zellen die Expression des proinflammatorischen M1-Polarisationsmarker iNOS in Makrophagen und die Sekretion des proatherogenen Chemokins CCL2. Durch die Zugabe neutralisierender Antikörper in die in vitro Kultur konnte gezeigt werden, dass die aufgeführten Prozesse teilweise von den klassischen Effektorzytokinen der CD8+ T-Zellen, INFγ und TNFα, abhängen.
Zusammenfassend zeigen unsere Daten, dass CD8+ T-Zellen die Ausbildung eines proatherogenen Phänotyps der Makrophagen, durch die Steigerung der Schaumzellbildung und Förderung der proinflammatorischen Makrophagenpolarisation, sowie die Inhibierung der antiinflammatorischen Efferozytosefunktion, bewirken.
Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6β1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities; (ii) distinguish between altered platelet adhesion, aggregation and activation; and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis.
Glycine and γ-aminobutyric acid (GABA) are the major determinants of inhibition in the central nervous system (CNS). These neurotransmitters target glycine and GABAA receptors, respectively, which both belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs). Interactions of the neurotransmitters with the cognate receptors result in receptor opening and a subsequent influx of chloride ions, which, in turn, leads to hyperpolarization of the membrane potential, thus counteracting excitatory stimuli. The majority of glycine receptors and a significant fraction of GABAA receptors (GABAARs) are recruited and anchored to the post-synaptic membrane by the central scaffolding protein gephyrin. This ∼93 kDa moonlighting protein is structurally organized into an N-terminal G-domain (GephG) connected to a C-terminal E-domain (GephE) via a long unstructured linker. Both inhibitory neurotransmitter receptors interact via a short peptide motif located in the large cytoplasmic loop located in between transmembrane helices 3 and 4 (TM3-TM4) of the receptors with a universal receptor-binding epitope residing in GephE. Gephyrin engages in nearly identical interactions with the receptors at the N-terminal end of the peptide motif, and receptor-specific interaction toward the C-terminal region of the peptide. In addition to its receptor-anchoring function, gephyrin also interacts with a rather large collection of macromolecules including different cytoskeletal elements, thus acting as central scaffold at inhibitory post-synaptic specializations. Dysfunctions in receptor-mediated or gephyrin-mediated neurotransmission have been identified in various severe neurodevelopmental disorders. Although biochemical, cellular and electrophysiological studies have helped to understand the physiological and pharmacological roles of the receptors, recent high resolution structures of the receptors have strengthened our understanding of the receptors and their gating mechanisms. Besides that, multiple crystal structures of GephE in complex with receptor-derived peptides have shed light into receptor clustering by gephyrin at inhibitory post-synapses. This review will highlight recent biochemical and structural insights into gephyrin and the GlyRs as well as GABAA receptors, which provide a deeper understanding of the molecular machinery mediating inhibitory neurotransmission.
Psoriasis is a frequent systemic inflammatory autoimmune disease characterized primarily by skin lesions with massive infiltration of leukocytes, but frequently also presents with cardiovascular comorbidities. Especially polymorphonuclear neutrophils (PMNs) abundantly infiltrate psoriatic skin but the cues that prompt PMNs to home to the skin are not well-defined. To identify PMN surface receptors that may explain PMN skin homing in psoriasis patients, we screened 332 surface antigens on primary human blood PMNs from healthy donors and psoriasis patients. We identified platelet surface antigens as a defining feature of psoriasis PMNs, due to a significantly increased aggregation of neutrophils and platelets in the blood of psoriasis patients. Similarly, in the imiquimod-induced experimental in vivo mouse model of psoriasis, disease induction promoted PMN-platelet aggregate formation. In psoriasis patients, disease incidence directly correlated with blood platelet counts and platelets were detected in direct contact with PMNs in psoriatic but not healthy skin. Importantly, depletion of circulating platelets in mice in vivo ameliorated disease severity significantly, indicating that both PMNs and platelets may be relevant for psoriasis pathology and disease severity.
CD8 T cells protect the liver against viral infection, but can also cause severe liver damage that may even lead to organ failure. Given the lack of mechanistic insights and specific treatment options in patients with acute fulminant hepatitis, we develop a mouse model reflecting a severe acute virus-induced CD8 T cell-mediated hepatitis. Here we show that antigen-specific CD8 T cells induce liver damage in a perforin-dependent manner, yet liver failure is not caused by effector responses targeting virus-infected hepatocytes alone. Additionally, CD8 T cell mediated elimination of cross-presenting liver sinusoidal endothelial cells causes endothelial damage that leads to a dramatically impaired sinusoidal perfusion and indirectly to hepatocyte death. With the identification of perforin-mediated killing as a critical pathophysiologic mechanism of liver failure and the protective function of a new class of perforin inhibitor, our study opens new potential therapeutic angles for fulminant viral hepatitis.