Agentenbasierte Simulation zur Ablaufoptimierung in Krankenhäusern und anderen verteilten, dynamischen Umgebungen
Agent based simulation of processes in hospitals and other distributed, dynamic environments.
Please always quote using this URN: urn:nbn:de:bvb:20-opus-24483
- Verteilte dynamische Systeme unter lokalen und globalen Gesichtspunkten zu optimieren ist eine schwierige Aufgabe. Zwar sind grundsätzliche Auswirkungen einzelner Maßnahmen häufig bekannt, durch widerstrebende Ziele, Wechselwirkungen zwischen Prozessen und Nebenwirkungen von Maßnahmen ist ein analytisches Vorgehen bei der Optimierung nicht möglich. Besonders schwierig wird es, wenn lokale Einheiten einerseits ihre Ziele und Autonomie behalten sollen, aber durch zentrale Vorgaben bzw. Anreize so gesteuert werden sollen, dass ein übergeordnetesVerteilte dynamische Systeme unter lokalen und globalen Gesichtspunkten zu optimieren ist eine schwierige Aufgabe. Zwar sind grundsätzliche Auswirkungen einzelner Maßnahmen häufig bekannt, durch widerstrebende Ziele, Wechselwirkungen zwischen Prozessen und Nebenwirkungen von Maßnahmen ist ein analytisches Vorgehen bei der Optimierung nicht möglich. Besonders schwierig wird es, wenn lokale Einheiten einerseits ihre Ziele und Autonomie behalten sollen, aber durch zentrale Vorgaben bzw. Anreize so gesteuert werden sollen, dass ein übergeordnetes Ziel erreicht wird. Ein praktisches Beispiel dieses allgemeinen Optimierungsproblems findet sich im Gesundheitswesen. Das Management von modernen Kliniken ist stets mit dem Problem konfrontiert, die Qualität der Pflege zu gewährleisten und gleichzeitig kosteneffizient zu arbeiten. Hier gilt es unter gegeben Rahmenbedingungen und bei Respektierung der Autonomie der Funktionseinheiten, Optimierungsmaßnahmen zu finden und durchzuführen. Vorhandene Werkzeuge zur Simulation und Modellierung bieten für diese Aufgabe keine ausreichend guten Vorgehensmodelle und Modellierungsmechanismen. Die agentenbasierte Simulation ermöglicht die Abbildung solcher Systeme und die Durchführung von Simulationsexperimenten zur Bewertung einzelner Maßnahmen. Es werden Lösungswege und Werkzeuge vorgestellt und evaluiert, die den Benutzer bei der Formalisierung des Wissens und der Modellierung solch komplexer Szenarien unterstützen und ein systematisches Vorgehen zur Optimierung ermöglichen.…
- To optimize distributed dynamic systems or organizations under local and global constraints is a difficult task. Although basic effects of single improvement steps are often known, it is difficult to examine a complex system with conflicting goals, interdependent processes and sideeffects. A special situation occurs, when local entities are supposed to keep autonomy but should be directed by a central instance, to reach a global goal. A concrete example of this optimization problem can be found in health care. The management of modern hospitalsTo optimize distributed dynamic systems or organizations under local and global constraints is a difficult task. Although basic effects of single improvement steps are often known, it is difficult to examine a complex system with conflicting goals, interdependent processes and sideeffects. A special situation occurs, when local entities are supposed to keep autonomy but should be directed by a central instance, to reach a global goal. A concrete example of this optimization problem can be found in health care. The management of modern hospitals has to ensure the quality of service and at the same time work cost efficient. They want to find improvement steps, which on the one hand respect the typical local autonomy of functional units and on the other hand reduce cost factors like the avarage stay duration of patients. Existing tools for modelling and simulation don't provide adequate methodologies and techniques for this problem. Agent based simulation allowes to realize suitable models and finding improvement steps in simulation studies. New approaches and tools are presented and evaluated, that support users in knowledge formalization and model building.…
Author: | Rainer Herrler |
---|---|
URN: | urn:nbn:de:bvb:20-opus-24483 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Mathematik und Informatik |
Faculties: | Fakultät für Mathematik und Informatik / Institut für Informatik |
Date of final exam: | 2007/09/21 |
Language: | German |
Year of Completion: | 2007 |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
GND Keyword: | Simulation; Prozessoptimierung; Modellierung; Mehragentensystem; Krankenhaus |
Tag: | Agentbased System; Hospital; Process Optimization; Simulation |
CCS-Classification: | I. Computing Methodologies / I.6 SIMULATION AND MODELING (G.3) / I.6.3 Applications |
Release Date: | 2007/10/10 |
Advisor: | Prof. Dr. Frank Puppe |