Structural and functional studies of \(Saccharomyces\) \(cerevisiae\) Ccr4-Not complex with Electron microscopy

Strukturelle und funktionelle Untersuchungen von \(Saccharomyces\) \(cerevisiae\) Ccr4-Not Komplexen mittels Elektronenmikroskopie

Please always quote using this URN: urn:nbn:de:bvb:20-opus-216527
  • The degradation of poly-adenosine tails of messenger RNAs (mRNAs) in the eukaryotic cells is a determining step in controlling the level of gene expression. The highly conserved Ccr4-Not complex was identified as the major deadenylation complex in all eukaryotic organisms. Plenty of biochemical studies have shown that this complex is also involved in many aspects of the mRNA metabolism, but we are still lacking the detailed structural information about its overall architecture and conformational states that could help to elucidate itsThe degradation of poly-adenosine tails of messenger RNAs (mRNAs) in the eukaryotic cells is a determining step in controlling the level of gene expression. The highly conserved Ccr4-Not complex was identified as the major deadenylation complex in all eukaryotic organisms. Plenty of biochemical studies have shown that this complex is also involved in many aspects of the mRNA metabolism, but we are still lacking the detailed structural information about its overall architecture and conformational states that could help to elucidate its multifunction and the way it is coordinated in the cells. Such information can also provide a basis to finding a possible way of intervention since the complex is also involved in some diseases such as cancer and cardiovascular disorders in humans. Meanwhile, the single particle Cryo-EM method has been through a “resolution revolution” recently due to the use of the newly developed direct electron detectors and has since resolved the high-resolution structures of many macromolecular protein complexes in their near-native state. Therefore, it was employed as a suitable method for studying the Ccr4-Not complex here. In this work, the Falcon 3EC direct detector mounted on the 300kV Titan Krios G3i Cryo-EM was evaluated for its practical performance at obtaining high-quality Cryo-EM data from protein samples of different molecular sizes. This served as a proof of principle for this detector’s capabilities and as a data collection guidance for studying the macromolecular complexes, such as the Ccr4-Not, when using an advanced high-performance microscope system. Next, the endogenous yeast Ccr4-Not complex was also purified via the immunoaffinity purification method and evaluated using negative staining EM to assess the conditions of the complex before proceeding to sample preparation for Cryo-EM. This has shown that the complex had an unexpected inherently dynamic property in vitro and extra optimisation procedures were needed to stabilise the complex during the purification and sample preparation. In addition, by using the label-free quantitative Mass spectrometry to examine the coimmunoprecipitated complex via different tagged subunits, it was deduced that two of the subunits (Not3/Not5) that shared some sequence similarity might compete for association with the scaffold subunit of the complex. An uncharacterised protein was also identified coimmunoprecipitating with the Caf130 subunit of the yeast complex. Cryo-EM data from the purified complex provided a low-resolution map that represents a surprisingly smaller partial complex as compared to 3D structures from previous studies, although gel electrophoresis and Mass spectrometry data have identified all of the nine subunits of the Ccr4-Not core complex in the sample. It was concluded that due to the presence of many predicted unstructured regions VI in the subunits and their dynamic composition in solution, the native complex could have been spontaneously denatured at the air/water interface during the sample preparation thus limiting the resolution of the Cryo-EM reconstruction. The purified complex was also examined for its deadenylase and ubiquitin ligase activity by in vitro assays. It was shown that the native complex has a different rate of activity and possibly also a different mode of action compared to the recombinant complexes from other species under similar reaction conditions. The Not4 E3 ligase was also shown to be active in the complex and was likely auto-ubiquitinated in the absence of a substrate. Both types of assays have also shown that the conformational flexibility does not seem to affect the enzymatic reactions when using a chemically crosslinked form of the complex for the assay, which implies that there can be other underlying mechanisms coordinating its structural and functional relationship. The findings from this work have therefore moved our understanding of the Ccr4-Not complex forward by looking at the different structural and functional behaviours of the endogenous complex, especially highlighting the obstacles in sample preparation for the native complex in high-resolution Cryo-EM. This would serve as foundation for future studies on the mechanism of this complex’s catalytic functions and also for optimising the Cryo-EM sample to generate better data that could eventually resolve the structure to a high-resolution.show moreshow less
  • Der Abbau des Poly(A)-Schwanzes von Messenger-RNAs (mRNA) in den eukaryotischen Zellen ist ein entscheidender Schritt bei der Kontrolle des Niveaus der Genexpression. Der hochkonservierte Ccr4-Not-Komplex wurde in allen eukaryotischen Organismen als der Hauptdeadenylierungskomplex identifiziert. Zahlreiche biochemische Studien haben gezeigt, dass dieser Komplex auch an vielen Aspekten des mRNA-Metabolismus beteiligt ist. Uns fehlen jedoch noch die detaillierten Strukturinformationen über seine Gesamtarchitektur und seine Konformationszustände,Der Abbau des Poly(A)-Schwanzes von Messenger-RNAs (mRNA) in den eukaryotischen Zellen ist ein entscheidender Schritt bei der Kontrolle des Niveaus der Genexpression. Der hochkonservierte Ccr4-Not-Komplex wurde in allen eukaryotischen Organismen als der Hauptdeadenylierungskomplex identifiziert. Zahlreiche biochemische Studien haben gezeigt, dass dieser Komplex auch an vielen Aspekten des mRNA-Metabolismus beteiligt ist. Uns fehlen jedoch noch die detaillierten Strukturinformationen über seine Gesamtarchitektur und seine Konformationszustände, die zur Aufklärung seiner Multifunktion und seiner Koordinierung in den Zellen beitragen könnten. Solche Informationen können auch Grundlage für die Suche nach einem möglichen Interventionsweg bieten, da der Komplex auch an einigen Krankheiten wie Krebs und Herz-Kreislauf-Erkrankungen des Menschen beteiligt ist. In der Zwischenzeit hat die Einzelpartikel-Kryo-EM-Methode aufgrund der Verwendung der neu entwickelten direkten Elektronendetektoren kürzlich eine „Auflösungsrevolution“ durchlaufen und seitdem die hochauflösenden Strukturen vieler makromolekularer Proteinkomplexe in ihrem nahezu nativen Zustand aufgelöst. Daher wurde es hier als geeignete Methode zur Untersuchung des Ccr4-Not-Komplexes eingesetzt. In dieser Arbeit wurde der Falcon 3EC-Direktdetektor, der an das 300-kV-Titan Krios G3i Kryo-EM montiert ist, auf seine praktische Leistung bei der Gewinnung hochwertiger Kryo-EM-Daten aus Proteinproben unterschiedlicher Molekülgröße untersucht. Dies diente als Grundsatznachweis für die Fähigkeiten des Detektors und als Leitfaden für die Datenerfassung zur Untersuchung der makromolekularen Komplexe wie Ccr4-Not bei Verwendung eines fortschrittlichen Hochleistungsmikroskopsystems. Als nächstes wurde der endogene Hefe-Ccr4-Not-Komplex auch über das Immunaffinitäts-Reinigungsverfahren gereinigt und unter Verwendung einer negativ gefärbten EM bewertet, um die Bedingungen des Komplexes zu bewerten, bevor mit der Probenvorbereitung für Kryo-EM fortgefahren wurde. Dies hat gezeigt, dass der Komplex in vitro eine unerwartete inhärent dynamische Eigenschaft aufwies und zusätzliche Optimierungsverfahren erforderlich waren, um den Komplex während der Reinigung und Probenvorbereitung zu stabilisieren. Darüber hinaus wurde unter Verwendung der markierungsfreien quantitativen Massenspektrometrie zur Untersuchung des co-immunpräzipitierten Komplexes über verschiedene markierte Untereinheiten abgeleitet, dass zwei der Untereinheiten (Not3 / Not5), die eine gewisse Sequenzähnlichkeit teilen, um die Verbindung mit der Gerüstuntereinheit des Komplexes konkurrieren könnten. Es wurde auch ein nicht charakterisiertes Protein identifiziert, das zusammen mit der Caf130-Untereinheit des Hefekomplexes immunpräzipitiert. Kryo-EM-Daten aus dem gereinigten Komplex lieferten eine Karte mit niedriger Auflösung, die im Vergleich zu 3D-Strukturen aus früheren Studien einen überraschend kleineren Teilkomplex darstellt, obwohl Gelelektrophorese- und Massenspektrometriedaten gezeigt haben, dass alle neun Untereinheiten des Ccr4-Not Kernkomplexware in der Probe vorhanden waren. Daraus kann man schließen, dass aufgrund des Vorhandenseins vieler vorhergesagter unstrukturierter Regionen in den Untereinheiten und ihrer dynamischen Zusammensetzung in Lösung der native Komplex während der Probenvorbereitung an der Luft / Wasser-Grenzfläche spontan denaturiert werden konnte, wodurch die Auflösung des Kryo-EM Wiederaufbaus begrenzt wurde. Der gereinigte Komplex wurde auch durch In-vitro-Tests auf seine Deadenylase- und Ubiquitin-Ligase-Aktivität untersucht. Es wurde aufgezeigt, dass der native Komplex eine andere Aktivitätsrate und möglicherweise auch eine andere Wirkungsweise aufweist als die rekombinanten Komplexe anderer Spezies unter ähnlichen Reaktionsbedingungen. Es wurde auch dargestellt, dass die Not4 E3-Ligase in dem Komplex aktiv ist und wahrscheinlich in Abwesenheit eines Substrats automatisch ubiquitiniert wird. Beide Arten von Assays haben auch gezeigt, dass die Konformationsflexibilität die enzymatischen Reaktionen bei Verwendung einer chemisch vernetzten Form des Komplexes für den Assay nicht zu beeinflussen scheint, was impliziert, dass es andere zugrunde liegende Mechanismen geben kann, die seine strukturelle und funktionelle Beziehung koordinieren. Die Ergebnisse dieser Arbeit haben daher unser Verständnis des Ccr4-Not-Komplexes weiterentwickelt, indem wir die unterschiedlichen strukturellen und funktionellen Verhaltensweisen des endogenen Komplexes untersucht und insbesondere die Hindernisse bei der Probenvorbereitung für den nativen Komplex im hochauflösendem Kryo-EM hervorgehoben haben. Dies würde als Grundlage für zukünftige Forschungen dienen, die Mechanismen seiner katalytischen Funktionen weiter zu untersuchen und auch die Kryo-EM-Probe zu optimieren, um bessere Daten zu generieren, die die Struktur schließlich in eine hohe Auflösung auflösen könnten.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Boyuan Song
URN:urn:nbn:de:bvb:20-opus-216527
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Fakultät für Chemie und Pharmazie / Lehrstuhl für Biochemie
Referee:Prof. Dr. Bettina Böttcher, Prof. Dr. Andreas Schlosser, Prof. Dr. Utz Fischer
Date of final exam:2020/11/10
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-21652
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:CCR4
Tag:Ccr4-Not; biochemistry; electron microscopy
Release Date:2021/05/10
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International