Convergence of Machine Vision and Melt Electrowriting

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-256365
  • Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that balances multiple parametric variables to arrive at a stable fabrication process. The better understanding of this balance is underscored here using high-resolution camera vision of jet stability profiles in different electrical fields. Complementing this visual information are fiber-diameter measurements obtained at precise points, allowing the correlation to electrified jet properties. Two process signatures—the jet angle and for the first time, the TaylorMelt electrowriting (MEW) is a high-resolution additive manufacturing technology that balances multiple parametric variables to arrive at a stable fabrication process. The better understanding of this balance is underscored here using high-resolution camera vision of jet stability profiles in different electrical fields. Complementing this visual information are fiber-diameter measurements obtained at precise points, allowing the correlation to electrified jet properties. Two process signatures—the jet angle and for the first time, the Taylor cone area—are monitored and analyzed with a machine vision system, while SEM imaging for diameter measurement correlates real-time information. This information, in turn, allows the detection and correction of fiber pulsing for accurate jet placement on the collector, and the in-process assessment of the fiber diameter. Improved process control is used to successfully fabricate collapsible MEW tubes; structures that require exceptional accuracy and printing stability. Using a precise winding angle of 60° and 300 layers, the resulting 12 mm-thick tubular structures have elastic snap-through instabilities associated with mechanical metamaterials. This study provides a detailed analysis of the fiber pulsing occurrence in MEW and highlights the importance of real-time monitoring of the Taylor cone volume to better understand, control, and predict printing instabilities.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Pawel Mieszczanek, Thomas M. Robinson, Paul D. DaltonORCiD, Dietmar W. Hutmacher
URN:urn:nbn:de:bvb:20-opus-256365
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Materials
Erscheinungsjahr:2021
Band / Jahrgang:33
Heft / Ausgabe:29
Aufsatznummer:2100519
Originalveröffentlichung / Quelle:Advanced Materials 33(29):2100519. DOI: 10.1002/adma.202100519
DOI:https://doi.org/10.1002/adma.202100519
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):3D printing; digitization; electrohydrodynamic; melt electrospinning writing; polycaprolactone
Datum der Freischaltung:17.02.2022
Lizenz (Deutsch):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International