• Treffer 2 von 6
Zurück zur Trefferliste

Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-145185
  • Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males.Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Katherina Beck, Nadine Ehmann, Till F. M. Andlauer, Dmitrij Ljaschenko, Katrin Strecker, Matthias Fischer, Robert J. Kittel, Thomas Raabe
URN:urn:nbn:de:bvb:20-opus-145185
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Physiologisches Institut
Medizinische Fakultät / Institut für Medizinische Strahlenkunde und Zellforschung
Medizinische Fakultät / Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie
Fakultät für Biologie / Rudolf-Virchow-Zentrum
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Disease Models & Mechanisms
Erscheinungsjahr:2015
Band / Jahrgang:8
Seitenangabe:1389-1400
Originalveröffentlichung / Quelle:Disease Models & Mechanisms (2015) 8, 1389-1400. DOI: 10.1242/dmm.021246
DOI:https://doi.org/10.1242/dmm.021246
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):Drosophila; MAPK signaling; RSK; S6KII RSK; axonal transport; glutamate receptor; mechanisms; mitochondrial transport; motoneuron; mrsk2 KO mouse; neuromuscular junction; plasticity; protein kinase; signal transduction pathway; synapse; transmission
Datum der Freischaltung:06.11.2018
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung