• Treffer 2 von 2
Zurück zur Trefferliste

The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-250025
  • Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletionHepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Autor(en): Alexander E. MayerORCiD, Mona C. LöfflerORCiD, Angel E. Loza ValdésORCiD, Werner SchmitzORCiD, Rabih El-MerahbiORCiD, Jonathan Trujillo-VieraORCiD, Manuela Erk, Thianzhou Zhang, Ursula Braun, Mathias Heikenwalder, Michael Leitges, Almut SchulzeORCiD, Grzegorz SumaraORCiD
URN:urn:nbn:de:bvb:20-opus-250025
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Theodor-Boveri-Institut für Biowissenschaften
Fakultät für Biologie / Rudolf-Virchow-Zentrum
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Science Signaling
Erscheinungsjahr:2019
Auflage:accepted manuscript
Originalveröffentlichung / Quelle:Science Signaling 12, 593 (2019). DOI: 10.1126/scisignal.aav9150
DOI:https://doi.org/10.1126/scisignal.aav9150
PubMed-ID:https://pubmed.ncbi.nlm.nih.gov/31387939
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 572 Biochemie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):Protein kinase D3 (PKD3); cholesterol; diacylglycerol (DAG); liver; metabolism
Datum der Freischaltung:02.12.2021
EU-Projektnummer / Contract (GA) number:678119
OpenAIRE:OpenAIRE
Lizenz (Deutsch):License LogoDeutsches Urheberrecht