Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 2 von 786
Zurück zur Trefferliste

iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-357794
  • Minimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitiveMinimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitive imaging. In recent years, basic experiments have shown that MPI has great potential for cardiovascular applications. However, commercially available MPI scanners were too large and expensive and had a small field of view (FOV) designed for rodents, which limited further translational research. The first human-sized MPI scanner designed specifically for brain imaging showed promising results but had limitations in gradient strength, acquisition time and portability. Here, we present a portable interventional MPI (iMPI) system dedicated for real-time endovascular interventions free of ionizing radiation. It uses a novel field generator approach with a very large FOV and an application-oriented open design enabling hybrid approaches with conventional X-ray-based angiography. The feasibility of a real-time iMPI-guided percutaneous transluminal angioplasty (PTA) is shown in a realistic dynamic human-sized leg model.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): P. Vogel, M. A. Rückert, C. Greiner, J. Günther, T. Reichl, T. Kampf, T. A. Bley, V. C. Behr, S. Herz
URN:urn:nbn:de:bvb:20-opus-357794
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Medizinische Fakultät / Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik)
Medizinische Fakultät / Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie)
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Scientific Reports
Erscheinungsjahr:2023
Band / Jahrgang:13
Aufsatznummer:10472
Originalveröffentlichung / Quelle:Scientific Reports (2023) 13:10472. https://doi.org/10.1038/s41598-023-37351-2
DOI:https://doi.org/10.1038/s41598-023-37351-2
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):biomedical engineering; electrical and electronic engineering; imaging; three-dimensional imaging
Datum der Freischaltung:03.05.2024
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International