• search hit 44 of 7573
Back to Result List

Molecular and functional relevance of Na\(_V\)1.8-induced atrial arrhythmogenic triggers in a human SCN10A knock-out stem cell model

Please always quote using this URN: urn:nbn:de:bvb:20-opus-362708
  • In heart failure and atrial fibrillation, a persistent Na\(^+\) current (I\(_{NaL}\)) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. We have recently shown that Na\(_V\)1.8 contributes to arrhythmogenesis by inducing a I\(_{NaL}\). Genome-wide association studies indicate that mutations in the SCN10A gene (Na\(_V\)1.8) are associated with increased risk for arrhythmias, Brugada syndrome, and sudden cardiac death. However, the mediation of these Na\(_V\)1.8-related effects, whether through cardiac ganglia orIn heart failure and atrial fibrillation, a persistent Na\(^+\) current (I\(_{NaL}\)) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. We have recently shown that Na\(_V\)1.8 contributes to arrhythmogenesis by inducing a I\(_{NaL}\). Genome-wide association studies indicate that mutations in the SCN10A gene (Na\(_V\)1.8) are associated with increased risk for arrhythmias, Brugada syndrome, and sudden cardiac death. However, the mediation of these Na\(_V\)1.8-related effects, whether through cardiac ganglia or cardiomyocytes, is still a subject of controversial discussion. We used CRISPR/Cas9 technology to generate homozygous atrial SCN10A-KO-iPSC-CMs. Ruptured-patch whole-cell patch-clamp was used to measure the I\(_{NaL}\) and action potential duration. Ca\(^{2+}\) measurements (Fluo 4-AM) were performed to analyze proarrhythmogenic diastolic SR Ca\(^{2+}\) leak. The I\(_{NaL}\) was significantly reduced in atrial SCN10A KO CMs as well as after specific pharmacological inhibition of Na\(_V\)1.8. No effects on atrial APD\(_{90}\) were detected in any groups. Both SCN10A KO and specific blockers of Na\(_V\)1.8 led to decreased Ca\(^{2+}\) spark frequency and a significant reduction of arrhythmogenic Ca\(^{2+}\) waves. Our experiments demonstrate that Na\(_V\)1.8 contributes to I\(_{NaL}\) formation in human atrial CMs and that Na\(_V\)1.8 inhibition modulates proarrhythmogenic triggers in human atrial CMs and therefore Na\(_V\)1.8 could be a new target for antiarrhythmic strategies.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Nico HartmannORCiD, Maria Knierim, Wiebke Maurer, Nataliya Dybkova, Gerd Hasenfuß, Samuel SossallaORCiD, Katrin Streckfuss-BömekeORCiD
URN:urn:nbn:de:bvb:20-opus-362708
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Pharmakologie und Toxikologie
Language:English
Parent Title (English):International Journal of Molecular Sciences
ISSN:1422-0067
Year of Completion:2023
Volume:24
Issue:12
Article Number:10189
Source:International Journal of Molecular Sciences (2023) 24:12, 10189. https://doi.org/10.3390/ijms241210189
DOI:https://doi.org/10.3390/ijms241210189
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:CRISPR Cas9; Na\(_V\)1.8; iPSC-cardiomyocytes; late Na\(^+\) current (I\(_{NaL}\))
Release Date:2024/06/11
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International