### Refine

#### Document Type

- Journal article (1)
- Doctoral Thesis (1)

#### Keywords

- Drinfel’d twists (1)
- Gravitation (1)
- Gravitationstheorie (1)
- Gravity (1)
- Nichtkommutative Differentialgeometrie (1)
- Nichtkommutative Geometrie (1)
- Nichtlokale Quantenfeldtheorie (1)
- Noncommutative Geometry (1)
- Physik (1)
- Quantenfeldtheorie (1)

We study classical scalar field theories on noncommutative curved spacetimes. Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005), 3511 and Classical Quantum Gravity 23 (2006), 1883], we describe noncommutative spacetimes by using (Abelian) Drinfel’d twists and the associated ?-products and ?-differential geometry. In particular, we allow for position dependent noncommutativity and do not restrict ourselves to the Moyal–Weyl deformation. We construct action functionals for real scalar fields on noncommutative curved spacetimes, and derive the corresponding deformed wave equations. We provide explicit examples of deformed Klein–Gordon operators for noncommutative Minkowski, de Sitter, Schwarzschild and Randall–Sundrum spacetimes, which solve the noncommutative Einstein equations. We study the construction of deformed Green’s functions and provide a diagrammatic approach for their perturbative calculation. The leading noncommutative corrections to the Green’s functions for our examples are derived.

Over the past decades, noncommutative geometry has grown into an established field in pure mathematics and theoretical physics. The discovery that noncommutative geometry emerges as a limit of quantum gravity and string theory has provided strong motivations to search for physics beyond the standard model of particle physics and also beyond Einstein's theory of general relativity within the realm of noncommutative geometries. A very fruitful approach in the latter direction is due to Julius Wess and his group, which combines deformation quantization (star-products) with quantum group methods. The resulting gravity theory does not only include noncommutative effects of spacetime, but it is also invariant under a deformed Hopf algebra of diffeomorphisms, generalizing the principle of general covariance to the noncommutative setting. The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. These are important investigations in order to capture the physical content of such theories and to make contact to applications in e.g. noncommutative cosmology and black hole physics. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative quantum field theory at short distances, i.e. in the ultraviolet. In the third part we develop elements of a more powerful, albeit more abstract, mathematical approach to noncommutative gravity. The goal is to better understand global aspects of homomorphisms between and connections on noncommutative vector bundles, which are fundamental objects in the mathematical description of noncommutative gravity. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of modules is clarified, and as a consequence we are able to add tensor fields of arbitrary type to the noncommutative gravity theory of Wess et al. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.