Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (2)
- Conference Proceeding (1)
- Report (1)
Keywords
- ARDS (1)
- BETA-Diversität (1)
- BETA-Multifunktionalität (1)
- Biodiversität (1)
- COVID-19 (1)
- Covid-19 (1)
- Entrepreneurship (1)
- Forschungsstation Fabrikschleichach (1)
- Innovationsforschung (1)
- Innovationsmanagement (1)
Institute
Sonstige beteiligte Institutionen
EU-Project number / Contract (GA) number
- 101015930 (1)
Background
Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes.
Methods
A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported.
Results
1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy.
Conclusions
Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models.
Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451.
5. Würzburger Wirtschaftssymposium, 20.11.2008 Deutsche Erfindungen verändern die Welt - heute wie vor 500 Jahren. Von Buchdruck, über Dieselmotor, Glühbirne bis hin zu Airbag, Aspirin, Dübel, Fernseher und mp3-Format. Alleine dieser bescheidene Überblick des Phänomens “Made in Germany” lässt den Betrachter die Bedeutung und das Potenzial von Innovationen am Standort Deutschland schnell erkennen. Experten aus Wirtschaft, Politik und Gesellschaft setzten sich am 20.11.2008 unter der Leitfrage: “Innovationen – Performancetreiber und nachhaltiger Wirtschaftsmotor in Deutschland?” mit der Bedeutung von Innovationen für den Standort Deutschland auseinander. Die Festschrift rundet - neben Interviews mit und Gastbeiträgen von Referenten der Veranstaltung - das 5. Würzburger Wirtschaftssymposium mit Stellungnahmen und Beiträgen renommierter Experten ab. Zu Wort kommen dabei Jungunternehmer ebenso wie Wissenschaftler der Universität Würzburg und Vertreter externer Organisationen.
The recently observed consistent loss of β-diversity across ecosystems indicates increasingly homogeneous communities in patches of landscapes, mainly caused by increasing land-use intensity. Biodiversity is related to numerous ecosystem functions and stability. Therefore, decreasing β-diversity is also expected to reduce multifunctionality. To assess the impact of homogenization and to develop guidelines to reverse its potentially negative effects, we combine expertise from forest science, ecology, remote sensing, chemical ecology and statistics in a collaborative and experimental β-diversity approach. Specifically, we will address the question whether the Enhancement of Structural Beta Complexity (ESBC) in forests by silviculture or natural disturbances will increase biodiversity and multifunctionality in formerly homogeneously structured production forests. Our approach will identify potential mechanisms behind observed homogenization-diversity-relationships and show how these translate into effects on multifunctionality. At eleven forest sites throughout Germany, we selected two districts as two types of small ‘forest landscapes’. In one of these two districts, we established ESBC treatments (nine differently treated 50x50 m patches with a focus on canopy cover and deadwood features). In the second, the control district, we will establish nine patches without ESBC. By a comprehensive sampling, we will monitor 18 taxonomic groups and measure 21 ecosystem functions, including key functions in temperate forests, on all patches. The statistical framework will allow a comprehensive biodiversity assessment by quantifying the different aspects of multitrophic biodiversity (taxonomical, functional and phylogenetic diversity) on different levels of biodiversity (α-, β-, γ-diversity). To combine overall diversity, we will apply the concept of multidiversity across the 18 taxa. We will use and develop new approaches for quantification and partitioning of multifunctionality at α- and β- scales. Overall, our study will herald a new research avenue, namely by experimentally describing the link between β-diversity and multifunctionality. Furthermore, we will help to develop guidelines for improved silvicultural concepts and concepts for management of natural disturbances in temperate forests reversing past homogenization effects.
Background
Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients.
Methods
673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival.
Results
Most patients were between 50 and 70 years of age. PaO\(_{2}\)/FiO\(_{2}\) ratio prior to ECMO was 72 mmHg (IQR: 58–99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41–0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28–1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events.
Conclusions
Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival.