Refine
Has Fulltext
- yes (46)
Is part of the Bibliography
- yes (46)
Year of publication
Document Type
- Journal article (46)
Language
- English (46)
Keywords
- biodiversity (8)
- ecosystem services (5)
- pollen (5)
- honey bees (4)
- oilseed rape (4)
- Apis mellifera (3)
- bees (3)
- climate change (3)
- foraging (3)
- larvae (3)
Institute
Sonstige beteiligte Institutionen
ResearcherID
- D-1221-2009 (1)
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.
Resource availability in agricultural landscapes has been disturbed for many organisms, including pollinator species. Abundance and diversity in flower availability benefit bee populations; however, little is known about which of protein or carbohydrate resources may limit their growth and reproductive performance. Here, we test the hypothesis of complementary resource limitation using a supplemental feeding approach. We applied this assumption with bumble bees (Bombus terrestris), assuming that colony growth and reproductive performance should depend on the continuous supply of carbohydrates and proteins, through the foraging for nectar and pollen, respectively. We placed wild‐caught bumble bee colonies along a landscape gradient of seminatural habitats, and monitored the colonies’ weight, foraging activity, and reproductive performance during the whole colony cycle. We performed supplemental feeding as an indicator of landscape resource limitation, using a factorial design consisting of the addition of sugar water (carbohydrate, supplemented or not) crossed by pollen (protein, supplemented or not). Bumble bee colony dynamics showed a clear seasonal pattern with a period of growth followed by a period of stagnation. Higher abundance of seminatural habitats resulted in reducing the proportion of pollen foragers relative to all foragers in both periods, and in improving the reproductive performance of bumble bees. Interestingly, the supplemental feeding of sugar water positively affected the colony weight during the stagnation period, and the supplemental feeding of pollen mitigated the landscape effect on pollen collection investment. Single and combined supplementation of sugar water and pollen increased the positive effect of seminatural habitats on reproductive performance. This study reveals a potential colimitation in pollen and nectar resources affecting foraging behavior and reproductive performance in bumble bees, and indicates that even in mixed agricultural landscapes with higher proportions of seminatural habitats, bumble bee populations face resource limitations. We conclude that the seasonal management of floral resources must be considered in conservation to support bumble bee populations and pollination services in farmlands.
Solitary bees build their nests by modifying the interior of natural cavities, and they provision them with food by importing collected pollen. As a result, the microbiota of the solitary bee nests may be highly dependent on introduced materials. In order to investigate how the collected pollen is associated with the nest microbiota, we used metabarcoding of the ITS2 rDNA and the 16S rDNA to simultaneously characterize the pollen composition and the bacterial communities of 100 solitary bee nest chambers belonging to seven megachilid species. We found a weak correlation between bacterial and pollen alpha diversity and significant associations between the composition of pollen and that of the nest microbiota, contributing to the understanding of the link between foraging and bacteria acquisition for solitary bees. Since solitary bees cannot establish bacterial transmission routes through eusociality, this link could be essential for obtaining bacterial symbionts for this group of valuable pollinators.
Abiotic stress by elevated tropospheric ozone and temperature can alter plants’ metabolism, growth, and nutritional value and modify the life cycle of their herbivores. We investigated how the duration of exposure of Sinapis arvensis plants to high ozone and temperature levels affect the life cycle of the large cabbage white, Pieris brassicae. Plants were exposed to ozone-clean (control) or ozone-enriched conditions (120 ppb) for either 1 or 5 days and were afterwards kept in a greenhouse with variable temperature conditions. When given the choice, P. brassicae butterflies laid 49% fewer eggs on ozone-exposed than on control plants when the exposure lasted for 5 days, but showed no preference when exposure lasted for 1 day. The caterpillars took longer to hatch on ozone-exposed plants and at lower ambient temperatures. The ozone treatment had a positive effect on the survival of the eggs. Ozone decreased the growth of caterpillars reared at higher temperatures on plants exposed for 5 days, but not on plants exposed for 1 day. Overall, longer exposure of the plants to ozone and higher temperatures affected the life cycle of the herbivore more strongly. With global warming, the indirect impacts of ozone on herbivores are likely to become more common.
Aim:
Temperature, food resources and top‐down regulation by antagonists are considered as major drivers of insect diversity, but their relative importance is poorly understood. Here, we used cavity‐nesting communities of bees, wasps and their antagonists to reveal the role of temperature, food resources, parasitism rate and land use as drivers of species richness at different trophic levels along a broad elevational gradient.
Location:
Mt. Kilimanjaro, Tanzania.
Taxon:
Cavity‐nesting Hymenoptera (Hymenoptera: Apidae, Colletidae, Megachilidae, Crabronidae, Sphecidae, Pompilidae, Vespidae).
Methods:
We established trap nests on 25 study sites that were distributed over similar large distances in terms of elevation along an elevational gradient from 866 to 1788 m a.s.l., including both natural and disturbed habitats. We quantified species richness and abundance of bees, wasps and antagonists, parasitism rates and flower or arthropod food resources. Data were analysed with generalized linear models within a multi‐model inference framework.
Results:
Elevational species richness patterns changed with trophic level from monotonically declining richness of bees to increasingly humped‐shaped patterns for caterpillar‐hunting wasps, spider‐hunting wasps and antagonists. Parasitism rates generally declined with elevation but were higher for wasps than for bees. Temperature was the most important predictor of both bee and wasp host richness patterns. Antagonist richness patterns were also well predicted by temperature, but in contrast to host richness patterns, additionally by resource abundance and diversity. The conversion of natural habitats through anthropogenic land use, which included biomass removal, agricultural inputs, vegetation structure and percentage of surrounding agricultural habitats, had no significant effects on bee and wasp communities.
Main conclusions:
Our study underpins the importance of temperature as a main driver of diversity gradients in ectothermic organisms and reveals the increasingly important role of food resources at higher trophic levels. Higher parasitism rates at higher trophic levels and at higher temperatures indicated that the relative importance of bottom‐up and top‐down drivers of species richness change across trophic levels and may respond differently to future climate change.
Abstract
Recent studies reveal the use of tree cavities by wild honeybee colonies in European forests. This highlights the conservation potential of forests for a highly threatened component of the native entomofauna in Europe, but currently no estimate of potential wild honeybee population sizes exists. Here, we analyzed the tree cavity densities of 106 forest areas across Europe and inferred an expected population size of wild honeybees. Both forest and management types affected the density of tree cavities.
Accordingly, we estimated that more than 80,000 wild honeybee colonies could be sustained in European forests. As expected, potential conservation hotspots were identified in unmanaged forests, and, surprisingly, also in other large forest areas across Europe. Our results contribute to the EU policy strategy to halt pollinator declines and reveal the potential of forest areas for the conservation of so far neglected wild honeybee populations in Europe.
Understanding extinction debts: spatio-temporal scales, mechanisms and a roadmap for future research
(2019)
Extinction debt refers to delayed species extinctions expected as a consequence of ecosystem perturbation. Quantifying such extinctions and investigating long‐term consequences of perturbations has proven challenging, because perturbations are not isolated and occur across various spatial and temporal scales, from local habitat losses to global warming. Additionally, the relative importance of eco‐evolutionary processes varies across scales, because levels of ecological organization, i.e. individuals, (meta)populations and (meta)communities, respond hierarchically to perturbations. To summarize our current knowledge of the scales and mechanisms influencing extinction debts, we reviewed recent empirical, theoretical and methodological studies addressing either the spatio–temporal scales of extinction debts or the eco‐evolutionary mechanisms delaying extinctions. Extinction debts were detected across a range of ecosystems and taxonomic groups, with estimates ranging from 9 to 90% of current species richness. The duration over which debts have been sustained varies from 5 to 570 yr, and projections of the total period required to settle a debt can extend to 1000 yr. Reported causes of delayed extinctions are 1) life‐history traits that prolong individual survival, and 2) population and metapopulation dynamics that maintain populations under deteriorated conditions. Other potential factors that may extend survival time such as microevolutionary dynamics, or delayed extinctions of interaction partners, have rarely been analyzed. Therefore, we propose a roadmap for future research with three key avenues: 1) the microevolutionary dynamics of extinction processes, 2) the disjunctive loss of interacting species and 3) the impact of multiple regimes of perturbation on the payment of debts. For their ability to integrate processes occurring at different levels of ecological organization, we highlight mechanistic simulation models as tools to address these knowledge gaps and to deepen our understanding of extinction dynamics.
Aim: While elevational gradients in species richness constitute some of the best depicted patterns in ecology, there is a large uncertainty concerning the role of food resource availability for the establishment of diversity gradients in insects. Here, we
analysed the importance of climate, area, land use and food resources for determining diversity gradients of dung beetles along extensive elevation and land use gradients on Mt. Kilimanjaro, Tanzania.
Location: Mt. Kilimanjaro, Tanzania.
Taxon: Scarabaeidae (Coleoptera).
Methods: Dung beetles were recorded with baited pitfall traps at 66 study plots along a 3.6 km elevational gradient. In order to quantify food resources for the dung beetle community in form of mammal defecation rates, we assessed mammalian diversity and biomass with camera traps. Using a multi‐model inference framework and path analysis, we tested the direct and indirect links between climate, area, land use and mammal defecation rates on the species richness and abundance of dung beetles.
Results: We found that the species richness of dung beetles declined exponentially with increasing elevation. Human land use diminished the species richness of functional groups exhibiting complex behaviour but did not have a significant influence on total species richness. Path analysis suggested that climate, in particular temperature and to a lesser degree precipitation, were the most important predictors of dung beetle species richness while mammal defecation rate was not supported as a predictor variable.
Main conclusions: Along broad climatic gradients, dung beetle diversity is mainly limited by climatic factors rather than by food resources. Our study points to a predominant role of temperature‐driven processes for the maintenance and origination of species diversity of ectothermic organisms, which will consequently be subject to ongoing climatic changes.
Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high.
Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.