Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Report (1)
Language
- English (3)
Keywords
- Arthropod (1)
- BETA-Diversität (1)
- BETA-Multifunktionalität (1)
- Biodiversität (1)
- Forschungsstation Fabrikschleichach (1)
- LiDAR (1)
- Waldökosystem (1)
- beta diversity (1)
- beta-multifunctionality (1)
- biodiversity (1)
Institute
Sonstige beteiligte Institutionen
The recently observed consistent loss of β-diversity across ecosystems indicates increasingly homogeneous communities in patches of landscapes, mainly caused by increasing land-use intensity. Biodiversity is related to numerous ecosystem functions and stability. Therefore, decreasing β-diversity is also expected to reduce multifunctionality. To assess the impact of homogenization and to develop guidelines to reverse its potentially negative effects, we combine expertise from forest science, ecology, remote sensing, chemical ecology and statistics in a collaborative and experimental β-diversity approach. Specifically, we will address the question whether the Enhancement of Structural Beta Complexity (ESBC) in forests by silviculture or natural disturbances will increase biodiversity and multifunctionality in formerly homogeneously structured production forests. Our approach will identify potential mechanisms behind observed homogenization-diversity-relationships and show how these translate into effects on multifunctionality. At eleven forest sites throughout Germany, we selected two districts as two types of small ‘forest landscapes’. In one of these two districts, we established ESBC treatments (nine differently treated 50x50 m patches with a focus on canopy cover and deadwood features). In the second, the control district, we will establish nine patches without ESBC. By a comprehensive sampling, we will monitor 18 taxonomic groups and measure 21 ecosystem functions, including key functions in temperate forests, on all patches. The statistical framework will allow a comprehensive biodiversity assessment by quantifying the different aspects of multitrophic biodiversity (taxonomical, functional and phylogenetic diversity) on different levels of biodiversity (α-, β-, γ-diversity). To combine overall diversity, we will apply the concept of multidiversity across the 18 taxa. We will use and develop new approaches for quantification and partitioning of multifunctionality at α- and β- scales. Overall, our study will herald a new research avenue, namely by experimentally describing the link between β-diversity and multifunctionality. Furthermore, we will help to develop guidelines for improved silvicultural concepts and concepts for management of natural disturbances in temperate forests reversing past homogenization effects.
Key message
Mobile laser scanning and geometrical analysis revealed relationships between tree geometry and seed dispersal mechanism, latitude of origin, as well as growth.
Abstract
The structure and dynamics of a forest are defined by the architecture and growth patterns of its individual trees. In turn, tree architecture and growth result from the interplay between the genetic building plans and environmental factors. We set out to investigate whether (1) latitudinal adaptations of the crown shape occur due to characteristic solar elevation angles at a species’ origin, (2) architectural differences in trees are related to seed dispersal strategies, and (3) tree architecture relates to tree growth performance. We used mobile laser scanning (MLS) to scan 473 trees and generated three-dimensional data of each tree. Tree architectural complexity was then characterized by fractal analysis using the box-dimension approach along with a topological measure of the top heaviness of a tree. The tree species studied originated from various latitudinal ranges, but were grown in the same environmental settings in the arboretum. We found that trees originating from higher latitudes had significantly less top-heavy geometries than those from lower latitudes. Therefore, to a certain degree, the crown shape of tree species seems to be determined by their original habitat. We also found that tree species with wind-dispersed seeds had a higher structural complexity than those with animal-dispersed seeds (p < 0.001). Furthermore, tree architectural complexity was positively related to the growth performance of the trees (p < 0.001). We conclude that the use of 3D data from MLS in combination with geometrical analysis, including fractal analysis, is a promising tool to investigate tree architecture.
Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land‐use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods.
Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1‐18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter‐ and longer‐term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671–674) based on a 10‐year multi‐site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication.
Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include ‘year’ as random effect, as suggested by Daskalova et al. (2021), fail to detect non‐linear trends and assume that consecutive years are independent samples which is questionable for insect time‐series data.
We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short‐term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions.