Refine
Has Fulltext
- yes (59)
Is part of the Bibliography
- yes (59)
Year of publication
Document Type
- Journal article (58)
- Report (1)
Language
- English (59)
Keywords
- biodiversity (9)
- pollen (6)
- ecosystem services (5)
- foraging (4)
- honey bees (4)
- oilseed rape (4)
- pollination (4)
- Apis mellifera (3)
- bees (3)
- climate change (3)
Institute
Sonstige beteiligte Institutionen
- Albert-Ludwigs-Universität Freiburg (1)
- DNA Analytics Core Facility, Biocenter, University of Wuerzburg, Wuerzburg, Germany (1)
- Goethe-Universität Frankfurt (1)
- Leuphana Universität Lüneburg (1)
- Technische Universität Dresden (1)
- Technische Universität München (1)
- Universität Bayreuth (1)
- Universität Göttingen (1)
- Universität Leipzig (1)
- iDiv (1)
ResearcherID
- D-1221-2009 (1)
Background
Bees (Hymenoptera: Apoidea: Anthophila) are the most important group of pollinators with about 20,507 known species worldwide. Despite the critical role of bees in providing pollination services, studies aiming at understanding which species are present across disturbance gradients are scarce. Limited taxononomic information for the existing and unidentified bee species in Tanzania make their conservation haphazard. Here, we present a dataset of bee species records obtained from a survey in nothern Tanzania i.e. Kilimanjaro, Arusha and Manyara regions. Our findings serve as baseline data necessary for understanding the diversity and distribution of bees in the northern parts of the country, which is a critical step in devising robust conservation and monitoring strategies for their populations.
New information
In this paper, we present information on 45 bee species belonging to 20 genera and four families sampled using a combination of sweep-netting and pan trap methods. Most species (27, ~ 60%) belong to the family Halictidae followed by 16 species (35.5%) from the family Apidae. Megachilidae and Andrenidae were the least represented, each with only one species (2.2%). Additional species of Apidae and Megachilidae sampled during this survey are not yet published on Global Biodiversity Information Facility (GBIF), once they will be available on GBIF, they will be published in a subsequent paper. From a total of 953 occurrences, highest numbers were recorded in Kilimanjaro Region (n = 511), followed by Arusha (n = 410) and Manyara (n = 32), but this pattern reflects the sampling efforts of the research project rather than real bias in the distributions of bee species in northern Tanzania.
Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.
Exposure of plants to environmental stressors can modify their metabolism, interactions with other organisms and reproductive success. Tropospheric ozone is a source of plant stress. We investigated how an acute exposure to ozone at different times of plant development affects reproductive performance, as well as the flowering patterns and the interactions with pollinators and herbivores, of wild mustard plants. The number of open flowers was higher on plants exposed to ozone at earlier ages than on the respective controls, while plants exposed at later ages showed a tendency for decreased number of open flowers. The changes in the number of flowers provided a good explanation for the ozone-induced effects on reproductive performance and on pollinator visitation. Ozone exposure at earlier ages also led to either earlier or extended flowering periods. Moreover, ozone tended to increase herbivore abundance, with responses depending on herbivore taxa and the plant age at the time of ozone exposure. These results suggest that the effects of ozone exposure depend on the developmental stage of the plant, affecting the flowering patterns in different directions, with consequences for pollination and reproduction of annual crops and wild species.
Resource availability in agricultural landscapes has been disturbed for many organisms, including pollinator species. Abundance and diversity in flower availability benefit bee populations; however, little is known about which of protein or carbohydrate resources may limit their growth and reproductive performance. Here, we test the hypothesis of complementary resource limitation using a supplemental feeding approach. We applied this assumption with bumble bees (Bombus terrestris), assuming that colony growth and reproductive performance should depend on the continuous supply of carbohydrates and proteins, through the foraging for nectar and pollen, respectively. We placed wild‐caught bumble bee colonies along a landscape gradient of seminatural habitats, and monitored the colonies’ weight, foraging activity, and reproductive performance during the whole colony cycle. We performed supplemental feeding as an indicator of landscape resource limitation, using a factorial design consisting of the addition of sugar water (carbohydrate, supplemented or not) crossed by pollen (protein, supplemented or not). Bumble bee colony dynamics showed a clear seasonal pattern with a period of growth followed by a period of stagnation. Higher abundance of seminatural habitats resulted in reducing the proportion of pollen foragers relative to all foragers in both periods, and in improving the reproductive performance of bumble bees. Interestingly, the supplemental feeding of sugar water positively affected the colony weight during the stagnation period, and the supplemental feeding of pollen mitigated the landscape effect on pollen collection investment. Single and combined supplementation of sugar water and pollen increased the positive effect of seminatural habitats on reproductive performance. This study reveals a potential colimitation in pollen and nectar resources affecting foraging behavior and reproductive performance in bumble bees, and indicates that even in mixed agricultural landscapes with higher proportions of seminatural habitats, bumble bee populations face resource limitations. We conclude that the seasonal management of floral resources must be considered in conservation to support bumble bee populations and pollination services in farmlands.
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.
Background
Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation.
Methods
We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests.
Results
In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference.
Discussion
In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region.
Despite decades of scientific effort, there is still no consensus on the determinants of broad-scale gradients of animal diver-sity. We argue that general drivers of diversity are unlikely to be found among the narrowly defined taxa which are typically analyzed in studies of broad-scale diversity gradients because ecological niches evolve largely conservatively. This causes constraints in the use of available niche space leading to systematic differences in diversity gradients among taxa. We instead advocate studies of phylogenetically diverse animal communities along broad environmental gradients. Such multi-taxa communities are less constrained in resource use and diversification and may be better targets for testing major classical hypotheses on diversity gradients. Besides increasing the spatial scale in analyses, expanding the phylogenetic coverage may be a second way to achieve higher levels of generality in studies of broad-scale diversity gradients
Specialization of plant-pollinator interactions increases with temperature at Mt. Kilimanjaro
(2020)
Aim: Species differ in their degree of specialization when interacting with other species, with significant consequences for the function and robustness of ecosystems. In order to better estimate such consequences, we need to improve our understanding of the spatial patterns and drivers of specialization in interaction networks.
Methods: Here, we used the extensive environmental gradient of Mt. Kilimanjaro (Tanzania, East Africa) to study patterns and drivers of specialization, and robustness of plant–pollinator interactions against simulated species extinction with standardized sampling methods. We studied specialization, network robustness and other network indices of 67 quantitative plant–pollinator networks consisting of 268 observational hours and 4,380 plant–pollinator interactions along a 3.4 km elevational gradient. Using path analysis, we tested whether resource availability, pollinator richness, visitation rates, temperature, and/or area explain average specialization in pollinator communities. We further linked pollinator specialization to different pollinator taxa, and species traits, that is, proboscis length, body size, and species elevational ranges.
Results: We found that specialization decreased with increasing elevation at different levels of biological organization. Among all variables, mean annual temperature was the best predictor of average specialization in pollinator communities. Specialization differed between pollinator taxa, but was not related to pollinator traits. Network robustness against simulated species extinctions of both plants and pollinators was lowest in the most specialized interaction networks, that is, in the lowlands.
Conclusions: Our study uncovers patterns in plant–pollinator specialization along elevational gradients. Mean annual temperature was closely linked to pollinator specialization. Energetic constraints, caused by short activity timeframes in cold highlands, may force ectothermic species to broaden their dietary spectrum. Alternatively or in addition, accelerated evolutionary rates might facilitate the establishment of specialization under warm climates. Despite the mechanisms behind the patterns have yet to be fully resolved, our data suggest that temperature shifts in the course of climate change may destabilize pollination networks by affecting network architecture.
Aim:
Temperature, food resources and top‐down regulation by antagonists are considered as major drivers of insect diversity, but their relative importance is poorly understood. Here, we used cavity‐nesting communities of bees, wasps and their antagonists to reveal the role of temperature, food resources, parasitism rate and land use as drivers of species richness at different trophic levels along a broad elevational gradient.
Location:
Mt. Kilimanjaro, Tanzania.
Taxon:
Cavity‐nesting Hymenoptera (Hymenoptera: Apidae, Colletidae, Megachilidae, Crabronidae, Sphecidae, Pompilidae, Vespidae).
Methods:
We established trap nests on 25 study sites that were distributed over similar large distances in terms of elevation along an elevational gradient from 866 to 1788 m a.s.l., including both natural and disturbed habitats. We quantified species richness and abundance of bees, wasps and antagonists, parasitism rates and flower or arthropod food resources. Data were analysed with generalized linear models within a multi‐model inference framework.
Results:
Elevational species richness patterns changed with trophic level from monotonically declining richness of bees to increasingly humped‐shaped patterns for caterpillar‐hunting wasps, spider‐hunting wasps and antagonists. Parasitism rates generally declined with elevation but were higher for wasps than for bees. Temperature was the most important predictor of both bee and wasp host richness patterns. Antagonist richness patterns were also well predicted by temperature, but in contrast to host richness patterns, additionally by resource abundance and diversity. The conversion of natural habitats through anthropogenic land use, which included biomass removal, agricultural inputs, vegetation structure and percentage of surrounding agricultural habitats, had no significant effects on bee and wasp communities.
Main conclusions:
Our study underpins the importance of temperature as a main driver of diversity gradients in ectothermic organisms and reveals the increasingly important role of food resources at higher trophic levels. Higher parasitism rates at higher trophic levels and at higher temperatures indicated that the relative importance of bottom‐up and top‐down drivers of species richness change across trophic levels and may respond differently to future climate change.
Aim: While elevational gradients in species richness constitute some of the best depicted patterns in ecology, there is a large uncertainty concerning the role of food resource availability for the establishment of diversity gradients in insects. Here, we
analysed the importance of climate, area, land use and food resources for determining diversity gradients of dung beetles along extensive elevation and land use gradients on Mt. Kilimanjaro, Tanzania.
Location: Mt. Kilimanjaro, Tanzania.
Taxon: Scarabaeidae (Coleoptera).
Methods: Dung beetles were recorded with baited pitfall traps at 66 study plots along a 3.6 km elevational gradient. In order to quantify food resources for the dung beetle community in form of mammal defecation rates, we assessed mammalian diversity and biomass with camera traps. Using a multi‐model inference framework and path analysis, we tested the direct and indirect links between climate, area, land use and mammal defecation rates on the species richness and abundance of dung beetles.
Results: We found that the species richness of dung beetles declined exponentially with increasing elevation. Human land use diminished the species richness of functional groups exhibiting complex behaviour but did not have a significant influence on total species richness. Path analysis suggested that climate, in particular temperature and to a lesser degree precipitation, were the most important predictors of dung beetle species richness while mammal defecation rate was not supported as a predictor variable.
Main conclusions: Along broad climatic gradients, dung beetle diversity is mainly limited by climatic factors rather than by food resources. Our study points to a predominant role of temperature‐driven processes for the maintenance and origination of species diversity of ectothermic organisms, which will consequently be subject to ongoing climatic changes.