Refine
Has Fulltext
- yes (24)
Is part of the Bibliography
- yes (24)
Document Type
- Journal article (24)
Language
- English (24)
Keywords
- tinnitus (6)
- ecological momentary assessment (5)
- mHealth (4)
- machine learning (4)
- crowdsensing (3)
- mobile health (3)
- self-help (2)
- Apple Watch 7 (1)
- Business Process Models (1)
- COVID-19 (1)
Institute
- Institut für Klinische Epidemiologie und Biometrie (23)
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (2)
- Medizinische Klinik und Poliklinik I (2)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Institut für Hygiene und Mikrobiologie (1)
- Institut für Informatik (1)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
Sonstige beteiligte Institutionen
Background: Over the recent years, technological advances of wrist-worn fitness trackers heralded a new era in the continuous monitoring of vital signs. So far, these devices have primarily been used for sports.
Objective: However, for using these technologies in health care, further validations of the measurement accuracy in hospitalized patients are essential but lacking to date.
Methods: We conducted a prospective validation study with 201 patients after moderate to major surgery in a controlled setting to benchmark the accuracy of heart rate measurements in 4 consumer-grade fitness trackers (Apple Watch 7, Garmin Fenix 6 Pro, Withings ScanWatch, and Fitbit Sense) against the clinical gold standard (electrocardiography).
Results: All devices exhibited high correlation (r≥0.95; P<.001) and concordance (rc≥0.94) coefficients, with a relative error as low as mean absolute percentage error <5% based on 1630 valid measurements. We identified confounders significantly biasing the measurement accuracy, although not at clinically relevant levels (mean absolute error<5 beats per minute).
Conclusions: Consumer-grade fitness trackers appear promising in hospitalized patients for monitoring heart rate.
Interactive system for similarity-based inspection and assessment of the well-being of mHealth users
(2021)
Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported.
Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case.
The increasing prevalence of smart mobile devices (e.g., smartphones) enables the combined use of mobile crowdsensing (MCS) and ecological momentary assessments (EMA) in the healthcare domain. By correlating qualitative longitudinal and ecologically valid EMA assessment data sets with sensor measurements in mobile apps, new valuable insights about patients (e.g., humans who suffer from chronic diseases) can be gained. However, there are numerous conceptual, architectural and technical, as well as legal challenges when implementing a respective software solution. Therefore, the work at hand (1) identifies these challenges, (2) derives respective recommendations, and (3) proposes a reference architecture for a MCS-EMA-platform addressing the defined recommendations. The required insights to propose the reference architecture were gained in several large-scale mHealth crowdsensing studies running for many years and different healthcare questions. To mention only two examples, we are running crowdsensing studies on questions for the tinnitus chronic disorder or psychological stress. We consider the proposed reference architecture and the identified challenges and recommendations as a contribution in two respects. First, they enable other researchers to align our practical studies with a baseline setting that can satisfy the variously revealed insights. Second, they are a proper basis to better compare data that was gathered using MCS and EMA. In addition, the combined use of MCS and EMA increasingly requires suitable architectures and associated digital solutions for the healthcare domain.
Prediction of tinnitus perception based on daily life mHealth data using country origin and season
(2022)
Tinnitus is an auditory phantom perception without external sound stimuli. This chronic perception can severely affect quality of life. Because tinnitus symptoms are highly heterogeneous, multimodal data analyses are increasingly used to gain new insights. MHealth data sources, with their particular focus on country- and season-specific differences, can provide a promising avenue for new insights. Therefore, we examined data from the TrackYourTinnitus (TYT) mHealth platform to create symptom profiles of TYT users. We used gradient boosting engines to classify momentary tinnitus and regress tinnitus loudness, using country of origin and season as features. At the daily assessment level, tinnitus loudness can be regressed with a mean absolute error rate of 7.9% points. In turn, momentary tinnitus can be classified with an F1 score of 93.79%. Both results indicate differences in the tinnitus of TYT users with respect to season and country of origin. The significance of the features was evaluated using statistical and explainable machine learning methods. It was further shown that tinnitus varies with temperature in certain countries. The results presented show that season and country of origin appear to be valuable features when combined with longitudinal mHealth data at the level of daily assessment.
Loneliness and lack of social well-being are associated with adverse health outcomes and have increased during the COVID-19 pandemic. Smartphone communication data have been suggested to help monitor loneliness, but this requires further evidence. We investigated the informative value of smartphone communication app data for predicting subjective loneliness and social well-being in a sample of 364 participants ranging from 18 to 78 years of age (52.2% female; mean age = 42.54, SD = 13.22) derived from the CORONA HEALTH APP study from July to December 2020 in Germany. The participants experienced relatively high levels of loneliness and low social well-being during the time period characterized by the COVID-19 pandemic. Apart from positive associations with phone call use times, smartphone communication app use was associated with social well-being and loneliness only when considering the age of participants. Younger participants with higher use times tended to report less social well-being and higher loneliness, while the opposite association was found for older adults. Thus, the informative value of smartphone communication use time was rather small and became evident only in consideration of age. The results highlight the need for further investigations and the need to address several limitations in order to draw conclusions at the population level.
To deal with drawbacks of paper-based data collection procedures, the QuestionSys approach empowers researchers with none or little programming knowledge to flexibly configure mobile data collection applications on demand. The mobile application approach of QuestionSys mainly pursues the goal to mitigate existing drawbacks of paper-based collection procedures in mHealth scenarios. Importantly, researchers shall be enabled to gather data in an efficient way. To evaluate the applicability of QuestionSys, several studies have been carried out to measure the efforts when using the framework in practice. In this work, the results of a study that investigated psychological insights on the required mental effort to configure the mobile applications are presented. Specifically, the mental effort for creating data collection instruments is validated in a study with N=80 participants across two sessions. Thereby, participants were categorized into novices and experts based on prior knowledge on process modeling, which is a fundamental pillar of the developed approach. Each participant modeled 10 instruments during the course of the study, while concurrently several performance measures are assessed (e.g., time needed or errors). The results of these measures are then compared to the self-reported mental effort with respect to the tasks that had to be modeled. On one hand, the obtained results reveal a strong correlation between mental effort and performance measures. On the other, the self-reported mental effort decreased significantly over the course of the study, and therefore had a positive impact on measured performance metrics. Altogether, this study indicates that novices with no prior knowledge gain enough experience over the short amount of time to successfully model data collection instruments on their own. Therefore, QuestionSys is a helpful instrument to properly deal with large-scale data collection scenarios like clinical trials.
For machine manufacturing companies, besides the production of high quality and reliable machines, requirements have emerged to maintain machine-related aspects through digital services. The development of such services in the field of the Industrial Internet of Things (IIoT) is dealing with solutions such as effective condition monitoring and predictive maintenance. However, appropriate data sources are needed on which digital services can be technically based. As many powerful and cheap sensors have been introduced over the last years, their integration into complex machines is promising for developing digital services for various scenarios. It is apparent that for components handling recorded data of these sensors they must usually deal with large amounts of data. In particular, the labeling of raw sensor data must be furthered by a technical solution. To deal with these data handling challenges in a generic way, a sensor processing pipeline (SPP) was developed, which provides effective methods to capture, process, store, and visualize raw sensor data based on a processing chain. Based on the example of a machine manufacturing company, the SPP approach is presented in this work. For the company involved, the approach has revealed promising results.
Process model comprehension is essential in order to understand the five Ws (i.e., who, what, where, when, and why) pertaining to the processes of organizations. However, research in this context showed that a proper comprehension of process models often poses a challenge in practice. For this reason, a vast body of research exists studying the factors having an influence on process model comprehension. In order to point research towards a neuro-centric perspective in this context, the paper at hand evaluates the appropriateness of measuring the electrodermal activity (EDA) during the comprehension of process models. Therefore, a preliminary test run and a feasibility study were conducted relying on an EDA and physical activity sensor to record the EDA during process model comprehension. The insights obtained from the feasibility study demonstrated that process model comprehension leads to an increased activity in the EDA. Furthermore, EDA-related results indicated significantly that participants were confronted with a higher cognitive load during the comprehension of complex process models. In addition, the experiences and limitations we learned in measuring the EDA during the comprehension of process models are discussed in this paper. In conclusion, the feasibility study demonstrated that the measurement of the EDA could be an appropriate method to obtain new insights into process model comprehension.
Tinnitus is a complex and heterogeneous psycho-physiological disorder responsible for causing a phantom ringing or buzzing sound albeit the absence of an external sound source. It has a direct influence on affecting the quality of life of its sufferers. Despite being around for a while, there has not been a cure for tinnitus, and the usual course of action for its treatment involves use of tinnitus retaining and sound therapy, or Cognitive Behavioral Therapy (CBT). One positive aspect about these therapies is that they can be administered face-to-face as well as delivered via internet or smartphone. Smartphones are especially helpful as they are highly personalized devices, and offer a well-established ecosystem of apps, accessible via respective marketplaces of differing mobile platforms. Note that current therapeutic treatments such as CBT have shown to be effective in suppressing the tinnitus symptoms when administered face-to-face, their effectiveness when being delivered using smartphones is not known so far. A quick search on the prominent market places of popular mobile platforms (Android and iOS) yielded roughly 250 smartphone apps offering tinnitus-related therapies and tinnitus management. As this number is expected to steadily increase due to high interest in smartphone app development, a contemporary review of such apps is crucial. In this paper, we aim to review scientific studies validating the smartphone apps, particularly to test their effectiveness in tinnitus management and treatment. We use the PRISMA guidelines for identification of studies on major scientific literature sources and delineate the outcomes of identified studies.