Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2022 (1)
Document Type
- Report (1)
Language
- English (1)
Keywords
Institute
Sonstige beteiligte Institutionen
The recently observed consistent loss of β-diversity across ecosystems indicates increasingly homogeneous communities in patches of landscapes, mainly caused by increasing land-use intensity. Biodiversity is related to numerous ecosystem functions and stability. Therefore, decreasing β-diversity is also expected to reduce multifunctionality. To assess the impact of homogenization and to develop guidelines to reverse its potentially negative effects, we combine expertise from forest science, ecology, remote sensing, chemical ecology and statistics in a collaborative and experimental β-diversity approach. Specifically, we will address the question whether the Enhancement of Structural Beta Complexity (ESBC) in forests by silviculture or natural disturbances will increase biodiversity and multifunctionality in formerly homogeneously structured production forests. Our approach will identify potential mechanisms behind observed homogenization-diversity-relationships and show how these translate into effects on multifunctionality. At eleven forest sites throughout Germany, we selected two districts as two types of small ‘forest landscapes’. In one of these two districts, we established ESBC treatments (nine differently treated 50x50 m patches with a focus on canopy cover and deadwood features). In the second, the control district, we will establish nine patches without ESBC. By a comprehensive sampling, we will monitor 18 taxonomic groups and measure 21 ecosystem functions, including key functions in temperate forests, on all patches. The statistical framework will allow a comprehensive biodiversity assessment by quantifying the different aspects of multitrophic biodiversity (taxonomical, functional and phylogenetic diversity) on different levels of biodiversity (α-, β-, γ-diversity). To combine overall diversity, we will apply the concept of multidiversity across the 18 taxa. We will use and develop new approaches for quantification and partitioning of multifunctionality at α- and β- scales. Overall, our study will herald a new research avenue, namely by experimentally describing the link between β-diversity and multifunctionality. Furthermore, we will help to develop guidelines for improved silvicultural concepts and concepts for management of natural disturbances in temperate forests reversing past homogenization effects.