### Refine

#### Has Fulltext

- yes (11)

#### Is part of the Bibliography

- yes (11)

#### Document Type

- Doctoral Thesis (11)

#### Language

- English (11)

#### Keywords

#### Institute

#### Sonstige beteiligte Institutionen

The topic of this thesis is the theoretical and numerical analysis of optimal control problems, whose differential constraints are given by Fokker-Planck models related to jump-diffusion processes. We tackle the issue of controlling a stochastic process by formulating a deterministic optimization problem. The
key idea of our approach is to focus on the probability density function of the process,
whose time evolution is modeled by the Fokker-Planck equation. Our control framework is advantageous since it allows to model the action of the control over the entire range of the process, whose statistics are characterized by the shape of its probability density function.
We first investigate jump-diffusion processes, illustrating their main properties. We define stochastic initial-value problems and present results on the existence and uniqueness of their solutions. We then discuss how numerical solutions of stochastic problems are computed, focusing on the Euler-Maruyama method.
We put our attention to jump-diffusion models with time- and space-dependent coefficients and jumps given by a compound Poisson process. We derive the related Fokker-Planck equations, which take the form of partial integro-differential equations. Their differential term is governed by a parabolic operator, while the nonlocal integral operator is due to the presence of the jumps. The derivation is carried out in two cases. On the one hand, we consider a process with unbounded range. On the other hand, we confine the dynamic of the sample paths to a bounded domain, and thus the behavior of the process in proximity of the boundaries has to be specified. Throughout this thesis, we set the barriers of the domain to be reflecting.
The Fokker-Planck equation, endowed with initial and boundary conditions, gives rise to Fokker-Planck problems. Their solvability is discussed in suitable functional spaces. The properties of their solutions are examined, namely their regularity, positivity and probability mass conservation. Since closed-form solutions to Fokker-Planck problems are usually not available, one has to resort to numerical methods.
The first main achievement of this thesis is the definition and analysis of conservative and positive-preserving numerical methods for Fokker-Planck problems. Our SIMEX1 and SIMEX2 (Splitting-Implicit-Explicit) schemes are defined within the framework given by the method of lines. The differential operator is discretized by a finite volume scheme given by the Chang-Cooper method, while the integral operator is approximated by a mid-point rule. This leads to a large system of ordinary differential equations, that we approximate with the Strang-Marchuk splitting method. This technique decomposes the original problem in a
sequence of different subproblems with simpler structure, which are separately solved and linked to each other through initial conditions and final solutions. After performing the splitting step, we carry out the time integration with first- and second-order time-differencing methods. These steps give rise to the SIMEX1 and SIMEX2 methods, respectively.
A full convergence and stability analysis of our schemes is included. Moreover, we are able to prove that the positivity and the mass conservation of the solution to Fokker-Planck problems are satisfied at the discrete level by the numerical solutions computed with the SIMEX schemes.
The second main achievement of this thesis is the theoretical analysis and the numerical solution of optimal control problems governed by Fokker-Planck models. The field of optimal control deals with finding control functions in such a way that given cost functionals are minimized. Our framework aims at the minimization of the difference between a known sequence of values and the first moment of a jump-diffusion process; therefore, this formulation can also be considered as a parameter estimation problem for stochastic processes. Two cases are discussed, in which the form of the cost functional is continuous-in-time and discrete-in-time, respectively.
The control variable enters the state equation as a coefficient of the Fokker-Planck partial integro-differential operator. We also include in the cost functional a $L^1$-penalization term, which enhances the sparsity of the solution. Therefore, the resulting optimization problem is nonconvex and nonsmooth. We derive the first-order optimality systems satisfied by the optimal solution. The computation of the optimal solution is carried out by means of proximal iterative schemes in an infinite-dimensional framework.

An efficient and accurate computational framework for solving control problems governed by quantum spin systems is presented. Spin systems are extremely important in modern quantum technologies such as nuclear magnetic resonance spectroscopy, quantum imaging and quantum computing. In these applications, two classes of quantum control problems arise: optimal control problems and exact-controllability problems, with a bilinear con- trol structure. These models correspond to the Schrödinger-Pauli equation, describing the time evolution of a spinor, and the Liouville-von Neumann master equation, describing the time evolution of a spinor and a density operator. This thesis focuses on quantum control problems governed by these models. An appropriate definition of the optimiza- tion objectives and of the admissible set of control functions allows to construct controls with specific properties. These properties are in general required by the physics and the technologies involved in quantum control applications. A main purpose of this work is to address non-differentiable quantum control problems. For this reason, a computational framework is developed to address optimal-control prob- lems, with possibly L1 -penalization term in the cost-functional, and exact-controllability problems. In both cases the set of admissible control functions is a subset of a Hilbert space. The bilinear control structure of the quantum model, the L1 -penalization term and the control constraints generate high non-linearities that make difficult to solve and analyse the corresponding control problems. The first part of this thesis focuses on the physical description of the spin of particles and of the magnetic resonance phenomenon. Afterwards, the controlled Schrödinger- Pauli equation and the Liouville-von Neumann master equation are discussed. These equations, like many other controlled quantum models, can be represented by dynamical systems with a bilinear control structure. In the second part of this thesis, theoretical investigations of optimal control problems, with a possible L1 -penalization term in the objective and control constraints, are consid- ered. In particular, existence of solutions, optimality conditions, and regularity properties of the optimal controls are discussed. In order to solve these optimal control problems, semi-smooth Newton methods are developed and proved to be superlinear convergent. The main difficulty in the implementation of a Newton method for optimal control prob- lems comes from the dimension of the Jacobian operator. In a discrete form, the Jacobian is a very large matrix, and this fact makes its construction infeasible from a practical point of view. For this reason, the focus of this work is on inexact Krylov-Newton methods, that combine the Newton method with Krylov iterative solvers for linear systems, and allows to avoid the construction of the discrete Jacobian. In the third part of this thesis, two methodologies for the exact-controllability of quan- tum spin systems are presented. The first method consists of a continuation technique, while the second method is based on a particular reformulation of the exact-control prob- lem. Both these methodologies address minimum L2 -norm exact-controllability problems. In the fourth part, the thesis focuses on the numerical analysis of quantum con- trol problems. In particular, the modified Crank-Nicolson scheme as an adequate time discretization of the Schrödinger equation is discussed, the first-discretize-then-optimize strategy is used to obtain a discrete reduced gradient formula for the differentiable part of the optimization objective, and implementation details and globalization strategies to guarantee an adequate numerical behaviour of semi-smooth Newton methods are treated. In the last part of this work, several numerical experiments are performed to vali- date the theoretical results and demonstrate the ability of the proposed computational framework to solve quantum spin control problems.

Analysis of discretization schemes for Fokker-Planck equations and related optimality systems
(2015)

The Fokker-Planck (FP) equation is a fundamental model in thermodynamic kinetic theories and
statistical mechanics.
In general, the FP equation appears in a number of different fields in natural sciences, for instance in solid-state physics, quantum optics, chemical physics, theoretical biology, and circuit theory. These equations also provide a powerful mean to define
robust control strategies for random models. The FP equations are partial differential equations (PDE) describing the time evolution of the probability density function (PDF) of stochastic processes.
These equations are of different types depending on the underlying stochastic process.
In particular, they are parabolic PDEs for the PDF of Ito processes, and hyperbolic PDEs for piecewise deterministic processes (PDP).
A fundamental axiom of probability calculus requires that the integral of the PDF over all the allowable state space must be equal to one, for all time. Therefore, for the purpose of accurate numerical simulation, a discretized FP equation must guarantee conservativeness of the total probability. Furthermore, since the
solution of the FP equation represents a probability density, any numerical scheme that approximates the FP equation is required to guarantee the positivity of the solution. In addition, an approximation scheme must be accurate and stable.
For these purposes, for parabolic FP equations on bounded domains, we investigate the Chang-Cooper (CC) scheme for space discretization and first- and
second-order backward time differencing. We prove that the resulting
space-time discretization schemes are accurate, conditionally stable, conservative, and preserve positivity.
Further, we discuss a finite difference discretization for the FP system corresponding to a PDP process in a bounded domain.
Next, we discuss FP equations in unbounded domains.
In this case, finite-difference or finite-element methods cannot be applied. By employing a suitable set of basis functions, spectral methods allow to treat unbounded domains. Since FP solutions decay exponentially at infinity, we consider Hermite functions as basis functions, which are Hermite polynomials multiplied by a Gaussian.
To this end, the Hermite spectral discretization is applied
to two different FP equations; the parabolic PDE corresponding to Ito processes, and the system of hyperbolic PDEs corresponding to a PDP process. The resulting discretized schemes are analyzed. Stability and spectral accuracy of the Hermite spectral discretization of the FP problems is proved. Furthermore, we investigate the conservativity of the solutions of FP equations discretized with the Hermite spectral scheme.
In the last part of this thesis, we discuss optimal control problems governed by FP equations on the characterization of their solution by optimality systems. We then investigate the Hermite spectral discretization of FP optimality systems in unbounded domains.
Within the framework of Hermite discretization, we obtain sparse-band systems of ordinary differential equations. We analyze the accuracy of the discretization schemes by showing spectral convergence in approximating the state, the adjoint, and the control variables that appear in the FP optimality systems.
To validate our theoretical estimates, we present results of numerical experiments.

The investigation of interacting multi-agent models is a new field of mathematical research with application to the study of behavior in groups of animals or community of people. One interesting feature of multi-agent systems is collective behavior. From the mathematical point of view, one of the challenging issues considering with these dynamical models is development of control mechanisms that are able to influence the time evolution of these systems.
In this thesis, we focus on the study of controllability, stabilization and optimal control problems for multi-agent systems considering three models as follows: The first one is the Hegselmann Krause opinion formation (HK) model. The HK dynamics describes how individuals' opinions are changed by the interaction with others taking place in a bounded domain of confidence. The study of this model focuses on determining feedback controls in order to drive the agents' opinions to reach a desired agreement. The second model is the Heider social balance (HB) model. The HB dynamics explains the evolution of relationships in a social network. One purpose of studying this system is the construction of control function in oder to steer the relationship to reach a friendship state. The third model that we discuss is a flocking model describing collective motion observed in biological systems. The flocking model under consideration includes self-propelling, friction, attraction, repulsion, and alignment features. We investigate a control for steering the flocking system to track a desired trajectory. Common to all these systems is our strategy to add a leader agent that interacts with all other members of the system and includes the control mechanism.
Our control through leadership approach is developed using classical theoretical control methods and a model predictive control (MPC) scheme. To apply the former method, for each model the stability of the corresponding linearized system near consensus is investigated. Further, local controllability is examined. However, only in the
Hegselmann-Krause opinion formation model, the feedback control is determined in order to steer agents' opinions to globally converge to a desired agreement. The MPC approach is an optimal control strategy based on numerical optimization. To apply the MPC scheme, optimal control problems for each model are formulated where the objective functions are different depending on the desired objective of the problem. The first-oder necessary optimality conditions for each problem are presented. Moreover for the numerical treatment, a sequence of open-loop discrete optimality systems is solved by accurate Runge-Kutta schemes, and in the optimization procedure, a nonlinear conjugate gradient solver is implemented. Finally, numerical experiments are performed to investigate the properties of the multi-agent models and demonstrate the ability of the proposed control strategies to drive multi-agent systems to attain a desired consensus and to track a given trajectory.

Proximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In addition, an application that uses parallel imaging is presented.
In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilinear elliptic and parabolic optimal control problems. In particular, fast convergence of these methods is proved. Furthermore, for benchmarking purposes, truncated proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of our proximal schemes that need less computation time than the semismooth Newton method in most cases. Results of numerical experiments are presented that successfully validate the theoretical estimates.

Mathematical modelling, simulation, and optimisation are core methodologies for future
developments in engineering, natural, and life sciences. This work aims at applying these
mathematical techniques in the field of biological processes with a focus on the wine
fermentation process that is chosen as a representative model.
In the literature, basic models for the wine fermentation process consist of a system of
ordinary differential equations. They model the evolution of the yeast population number
as well as the concentrations of assimilable nitrogen, sugar, and ethanol. In this thesis,
the concentration of molecular oxygen is also included in order to model the change of
the metabolism of the yeast from an aerobic to an anaerobic one. Further, a more sophisticated
toxicity function is used. It provides simulation results that match experimental
measurements better than a linear toxicity model. Moreover, a further equation for the
temperature plays a crucial role in this work as it opens a way to influence the fermentation
process in a desired way by changing the temperature of the system via a cooling
mechanism. From the view of the wine industry, it is necessary to cope with large scale
fermentation vessels, where spatial inhomogeneities of concentrations and temperature
are likely to arise. Therefore, a system of reaction-diffusion equations is formulated in
this work, which acts as an approximation for a model including computationally very
expensive fluid dynamics.
In addition to the modelling issues, an optimal control problem for the proposed
reaction-diffusion fermentation model with temperature boundary control is presented
and analysed. Variational methods are used to prove the existence of unique weak solutions
to this non-linear problem. In this framework, it is possible to exploit the Hilbert
space structure of state and control spaces to prove the existence of optimal controls.
Additionally, first-order necessary optimality conditions are presented. They characterise
controls that minimise an objective functional with the purpose to minimise the final
sugar concentration. A numerical experiment shows that the final concentration of sugar
can be reduced by a suitably chosen temperature control.
The second part of this thesis deals with the identification of an unknown function
that participates in a dynamical model. For models with ordinary differential equations,
where parts of the dynamic cannot be deduced due to the complexity of the underlying
phenomena, a minimisation problem is formulated. By minimising the deviations of simulation
results and measurements the best possible function from a trial function space
is found. The analysis of this function identification problem covers the proof of the
differentiability of the function–to–state operator, the existence of minimisers, and the
sensitivity analysis by means of the data–to–function mapping. Moreover, the presented
function identification method is extended to stochastic differential equations. Here, the
objective functional consists of the difference of measured values and the statistical expected
value of the stochastic process solving the stochastic differential equation. Using a
Fokker-Planck equation that governs the probability density function of the process, the
probabilistic problem of simulating a stochastic process is cast to a deterministic partial
differential equation. Proofs of unique solvability of the forward equation, the existence of
minimisers, and first-order necessary optimality conditions are presented. The application
of the function identification framework to the wine fermentation model aims at finding
the shape of the toxicity function and is carried out for the deterministic as well as the
stochastic case.

In this work, multi-particle quantum optimal control problems are studied in the framework of time-dependent density functional theory (TDDFT).
Quantum control problems are of great importance in both fundamental research and application of atomic and molecular systems. Typical applications are laser induced chemical reactions, nuclear magnetic resonance experiments, and quantum computing.
Theoretically, the problem of how to describe a non-relativistic system of multiple particles is solved by the Schrödinger equation (SE). However, due to the exponential increase in numerical complexity with the number of particles, it is impossible to directly solve the Schrödinger equation for large systems of interest. An efficient and successful approach to overcome this difficulty is the framework of TDDFT and the use of the time-dependent Kohn-Sham (TDKS) equations therein.
This is done by replacing the multi-particle SE with a set of nonlinear single-particle Schrödinger equations that are coupled through an additional potential.
Despite the fact that TDDFT is widely used for physical and quantum chemical calculation and software packages for its use are readily available, its mathematical foundation is still under active development and even fundamental issues remain unproven today.
The main purpose of this thesis is to provide a consistent and rigorous setting for the TDKS equations and of the related optimal control problems.
In the first part of the thesis, the framework of density functional theory (DFT) and TDDFT are introduced. This includes a detailed presentation of the different functional sets forming DFT. Furthermore, the known equivalence of the TDKS system to the original SE problem is further discussed.
To implement the TDDFT framework for multi-particle computations, the TDKS equations provide one of the most successful approaches nowadays. However, only few mathematical results concerning these equations are available and these results do not cover all issues that arise in the formulation of optimal control problems governed by the TDKS model.
It is the purpose of the second part of this thesis to address these issues such as higher regularity of TDKS solutions and the case of weaker requirements on external (control) potentials that are instrumental for the formulation of well-posed TDKS control problems. For this purpose, in this work, existence and uniqueness of TDKS solutions are investigated in the Galerkin framework and using energy estimates for the nonlinear TDKS equations.
In the third part of this thesis, optimal control problems governed by the TDKS model are formulated and investigated. For this purpose, relevant cost functionals that model the purpose of the control are discussed.
Henceforth, TDKS control problems result from the requirement of optimising the given cost functionals subject to the differential constraint given by the TDKS equations. The analysis of these problems is novel and represents one of the main contributions of the present thesis.
In particular, existence of minimizers is proved and their characterization by TDKS optimality systems is discussed in detail.
To this end, Fréchet differentiability of the TDKS model and of the cost functionals is addressed considering \(H^1\) cost of the control.
This part is concluded by deriving the reduced gradient in the \(L^2\) and \(H^1\) inner product.
While the \(L^2\) optimization is widespread in the literature, the choice of the \(H^1\) gradient is motivated in this work by theoretical consideration and by resulting numerical advantages.
The last part of the thesis is devoted to the numerical approximation of the TDKS optimality systems and to their solution by gradient-based optimization techniques.
For the former purpose, Strang time-splitting pseudo-spectral schemes are discussed including a review of some recent theoretical estimates for these schemes and a numerical validation of these estimates.
For the latter purpose, nonlinear (projected) conjugate gradient methods are implemented and are used to validate the theoretical analysis of this thesis with results of numerical experiments with different cost functional settings.

This thesis deals with a new so-called sequential quadratic Hamiltonian (SQH) iterative scheme to solve optimal control problems with differential models and cost functionals ranging from smooth to discontinuous and non-convex. This scheme is based on the Pontryagin maximum principle (PMP) that provides necessary optimality conditions for an optimal solution. In this framework, a Hamiltonian function is defined that attains its minimum pointwise at the optimal solution of the corresponding optimal control problem. In the SQH scheme, this Hamiltonian function is augmented by a quadratic penalty term consisting of the current control function and the control function from the previous iteration. The heart of the SQH scheme is to minimize this augmented Hamiltonian function pointwise in order to determine a control update. Since the PMP does not require any differ- entiability with respect to the control argument, the SQH scheme can be used to solve optimal control problems with both smooth and non-convex or even discontinuous cost functionals. The main achievement of the thesis is the formulation of a robust and efficient SQH scheme and a framework in which the convergence analysis of the SQH scheme can be carried out. In this framework, convergence of the scheme means that the calculated solution fulfills the PMP condition. The governing differential models of the considered optimal control problems are ordinary differential equations (ODEs) and partial differential equations (PDEs). In the PDE case, elliptic and parabolic equations as well as the Fokker-Planck (FP) equation are considered. For both the ODE and the PDE cases, assumptions are formulated for which it can be proved that a solution to an optimal control problem has to fulfill the PMP. The obtained results are essential for the discussion of the convergence analysis of the SQH scheme. This analysis has two parts. The first one is the well-posedness of the scheme which means that all steps of the scheme can be carried out and provide a result in finite time. The second part part is the PMP consistency of the solution. This means that the solution of the SQH scheme fulfills the PMP conditions. In the ODE case, the following results are obtained that state well-posedness of the SQH scheme and the PMP consistency of the corresponding solution. Lemma 7 states the existence of a pointwise minimum of the augmented Hamiltonian. Lemma 11 proves the existence of a weight of the quadratic penalty term such that the minimization of the corresponding augmented Hamiltonian results in a control updated that reduces the value of the cost functional. Lemma 12 states that the SQH scheme stops if an iterate is PMP optimal. Theorem 13 proves the cost functional reducing properties of the SQH control updates. The main result is given in Theorem 14, which states the pointwise convergence of the SQH scheme towards a PMP consistent solution. In this ODE framework, the SQH method is applied to two optimal control problems. The first one is an optimal quantum control problem where it is shown that the SQH method converges much faster to an optimal solution than a globalized Newton method. The second optimal control problem is an optimal tumor treatment problem with a system of coupled highly non-linear state equations that describe the tumor growth. It is shown that the framework in which the convergence of the SQH scheme is proved is applicable for this highly non-linear case. Next, the case of PDE control problems is considered. First a general framework is discussed in which a solution to the corresponding optimal control problem fulfills the PMP conditions. In this case, many theoretical estimates are presented in Theorem 59 and Theorem 64 to prove in particular the essential boundedness of the state and adjoint variables. The steps for the convergence analysis of the SQH scheme are analogous to that of the ODE case and result in Theorem 27 that states the PMP consistency of the solution obtained with the SQH scheme. This framework is applied to different elliptic and parabolic optimal control problems, including linear and bilinear control mechanisms, as well as non-linear state equations. Moreover, the SQH method is discussed for solving a state-constrained optimal control problem in an augmented formulation. In this case, it is shown in Theorem 30 that for increasing the weight of the augmentation term, which penalizes the violation of the state constraint, the measure of this state constraint violation by the corresponding solution converges to zero. Furthermore, an optimal control problem with a non-smooth L\(^1\)-tracking term and a non-smooth state equation is investigated. For this purpose, an adjoint equation is defined and the SQH method is used to solve the corresponding optimal control problem. The final part of this thesis is devoted to a class of FP models related to specific stochastic processes. The discussion starts with a focus on random walks where also jumps are included. This framework allows a derivation of a discrete FP model corresponding to a continuous FP model with jumps and boundary conditions ranging from absorbing to totally reflecting. This discussion allows the consideration of the drift-control resulting from an anisotropic probability of the steps of the random walk. Thereafter, in the PMP framework, two drift-diffusion processes and the corresponding FP models with two different control strategies for an optimal control problem with an expectation functional are considered. In the first strategy, the controls depend on time and in the second one, the controls depend on space and time. In both cases a solution to the corresponding optimal control problem is characterized with the PMP conditions, stated in Theorem 48 and Theorem 49. The well-posedness of the SQH scheme is shown in both cases and further conditions are discussed that ensure the convergence of the SQH scheme to a PMP consistent solution. The case of a space and time dependent control strategy results in a special structure of the corresponding PMP conditions that is exploited in another solution method, the so-called direct Hamiltonian (DH) method.

The main theme of this thesis is the development of multigrid and hierarchical matrix solution procedures with almost linear computational complexity for classes of partial integro-differential problems. An elliptic partial integro-differential equation, a convection-diffusion partial integro-differential equation and a convection-diffusion partial integro-differential optimality system are investigated. In the first part of this work, an efficient multigrid finite-differences scheme for solving an elliptic
Fredholm partial integro-differential equation (PIDE) is discussed. This scheme combines a second-order accurate finite difference discretization and a Simpson's quadrature rule to approximate the PIDE problem and a multigrid scheme and a fast
multilevel integration method of the Fredholm operator allowing the fast solution of the PIDE problem. Theoretical estimates of second-order accuracy and results of local Fourier analysis of convergence of the proposed multigrid scheme
are presented. Results of numerical experiments validate these estimates and demonstrate optimal computational complexity of the proposed framework that includes numerical experiments for elliptic PIDE problems with singular kernels. The experience gained in this part of the work is used for the investigation of convection diffusion partial-integro differential equations in the second part of this thesis.
Convection-diffusion PIDE problems are discretized using a finite volume scheme referred to as the Chang and Cooper (CC) scheme and a quadrature rule. Also for this class of PIDE problems and this numerical setting, a stability and accuracy analysis of the CC scheme combined with a Simpson's quadrature rule is presented proving second-order accuracy of the numerical solution. To extend and investigate the proposed approximation and solution strategy to the case of systems of convection-diffusion PIDE, an optimal control problem governed by this model is considered. In this case the research focus is the CC-Simpson's discretization of the optimality system and its solution by the proposed multigrid strategy. Second-order accuracy of the optimization solution is proved and results of local Fourier analysis are presented that provide sharp convergence estimates of the optimal computational complexity of the multigrid-fast integration technique.
While (geometric) multigrid techniques require ad-hoc implementation depending on the structure of the PIDE problem and on the dimensionality of the domain where the problem is considered, the hierarchical matrix framework allows a more general treatment that exploits the algebraic structure of the problem at hand. In this thesis, this framework is extended to the case of combined differential and integral problems considering the case of a convection-diffusion PIDE. In this case, the starting point is the CC discretization of the convection-diffusion operator combined with the trapezoidal quadrature rule. The hierarchical matrix approach exploits the algebraic nature of the hierarchical matrices for blockwise approximations by low-rank matrices of the sparse convection-diffusion approximation and enables data sparse representation of the fully populated matrix where all essential matrix operations are performed with at most logarithmic optimal complexity. The factorization of part of or the whole coefficient matrix is used as a preconditioner to the solution of the PIDE problem using a generalized minimum residual (GMRes) procedure as a solver.
Numerical analysis estimates of the accuracy of the
finite-volume and trapezoidal rule approximation are
presented and combined with estimates of the
hierarchical matrix approximation and with the
accuracy of the GMRes iterates. Results of numerical experiments are reported that
successfully validate the theoretical estimates and
the optimal computational complexity of the proposed hierarchical matrix
solution procedure. These results include an extension to higher dimensions and an application to the time evolution of the probability density function of a jump diffusion process.

Theoretical and numerical investigation of optimal control problems governed by kinetic models
(2021)

This thesis is devoted to the numerical and theoretical analysis of ensemble optimal control problems governed by kinetic models. The formulation and study of these problems have been put forward in recent years by R.W. Brockett with the motivation that ensemble control may provide a more general and robust control framework for dynamical systems. Following this formulation, a Liouville (or continuity) equation with an unbounded drift function is considered together with a class of cost functionals that include tracking of ensembles of trajectories of dynamical systems and different control costs. Specifically, $L^2$, $H^1$ and $L^1$ control costs are taken into account which leads to non--smooth optimization problems. For the theoretical investigation of the resulting optimal control problems, a well--posedness theory in weighted Sobolev spaces is presented for Liouville and related transport equations. Specifically, existence and uniqueness results for these equations and energy estimates in suitable norms are provided; in particular norms in weighted Sobolev spaces. Then, non--smooth optimal control problems governed by the Liouville equation are formulated with a control mechanism in the drift function. Further, box--constraints on the control are imposed. The control--to--state map is introduced, that associates to any control the unique solution of the corresponding Liouville equation. Important properties of this map are investigated, specifically, that it is well--defined, continuous and Frechet differentiable. Using the first two properties, the existence of solutions to the optimal control problems is shown. While proving the differentiability, a loss of regularity is encountered, that is natural to hyperbolic equations. This leads to the need of the investigation of the control--to--state map in the topology of weighted Sobolev spaces. Exploiting the Frechet differentiability, it is possible to characterize solutions to the optimal control problem as solutions to an optimality system. This system consists of the Liouville equation, its optimization adjoint in the form of a transport equation, and a gradient inequality. Numerical methodologies for solving Liouville and transport equations are presented that are based on a non--smooth Lagrange optimization framework. For this purpose, approximation and solution schemes for such equations are developed and analyzed. For the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov--Tadmor method, a Runge--Kutta scheme, and a Strang splitting method are discussed. Stability and second--order accuracy of these resulting schemes are proven in the discrete $L^1$ norm. In addition, conservation of mass and positivity preservation are confirmed for the solution method of the Liouville model. As numerical optimization strategy, an adapted Krylow--Newton method is applied. Since the control is considered to be an element of $H^1$ and to obey certain box--constraints, a method for calculating a $H^1$ projection is presented. Since the optimal control problem is non-smooth, a semi-smooth adaption of Newton's method is taken into account. Results of numerical experiments are presented that successfully validate the proposed deterministic framework. After the discussion of deterministic schemes, the linear space--homogeneous Keilson--Storer master equation is investigated. This equation was originally developed for the modelling of Brownian motion of particles immersed in a fluid and is a representative model of the class of linear Boltzmann equations. The well--posedness of the Keilson--Storer master equation is investigated and energy estimates in different topologies are derived. To solve this equation numerically, Monte Carlo methods are considered. Such methods take advantage of the kinetic formulation of the Liouville equation and directly implement the behaviour of the system of particles under consideration. This includes the probabilistic behaviour of the collisions between particles. Optimal control problems are formulated with an objective that is constituted of certain expected values in velocity space and the $L^2$ and $H^1$ costs of the control. The problems are governed by the Keilson--Storer master equation and the control mechanism is considered to be within the collision kernel. The objective of the optimal control of this model is to drive an ensemble of particles to acquire a desired mean velocity and to achieve a desired final velocity configuration. Existence of solutions of the optimal control problem is proven and a Keilson--Storer optimality system characterizing the solution of the proposed optimal control problem is obtained. The optimality system is used to construct a gradient--based optimization strategy in the framework of Monte--Carlo methods. This task requires to accommodate the resulting adjoint Keilson--Storer model in a form that is consistent with the kinetic formulation. For this reason, we derive an adjoint Keilson--Storer collision kernel and an additional source term. A similar approach is presented in the case of a linear space--inhomogeneous kinetic model with external forces and with Keilson--Storer collision term. In this framework, a control mechanism in the form of an external space--dependent force is investigated. The purpose of this control is to steer the multi--particle system to follow a desired mean velocity and position and to reach a desired final configuration in phase space. An optimal control problem using the formulation of ensemble controls is stated with an objective that is constituted of expected values in phase space and $H^1$ costs of the control. For solving the optimal control problems, a gradient--based computational strategy in the framework of Monte Carlo methods is developed. Part of this is the denoising of the distribution functions calculated by Monte Carlo algorithms using methods of the realm of partial differential equations. A standalone C++ code is presented that implements the developed non--linear conjugated gradient strategy. Results of numerical experiments confirm the ability of the designed probabilistic control framework to operate as desired. An outlook section about optimal control problems governed by non--linear space--inhomogeneous kinetic models completes this thesis.