Refine
Has Fulltext
- yes (13)
Is part of the Bibliography
- yes (13)
Document Type
- Doctoral Thesis (13)
Keywords
- Trypanosoma brucei (5)
- Chromatin (3)
- Fuchsbandwurm (2)
- Histon-Methyltransferase (2)
- Histone (2)
- Stammzelle (2)
- developmental differentiation (2)
- Acetylation (1)
- Altern (1)
- Anpassung (1)
Institute
Sonstige beteiligte Institutionen
Die alveoläre Echinokokkose (AE) ist eine lebensbedrohliche Erkrankung des Menschen, welche durch das infiltrative Wachstum des Metazestoden-Larvenstadiums des Fuchsbandwurms (Echinococcus multilocularis) in der Leber verursacht wird. Das tumorartige Wachstum des Metazestoden beruht auf einer Echinococcus-spezifischen Modifikation der anterior-posterioren-Körperachse (AP Achse). Es wird vermutet, dass dabei der anteriore Pol der invadierenden Oncospären-Larve zunächst abgeschaltet wird und sich der Metazestode anschließend asexuell als vesikuläres, posteriorisiertes Gewebes im Wirt vermehrt. Nach massiver Proliferation wird der anteriore Pol reetabliert und führt zur Bildung zahlreicher Bandwurm-Kopfanlagen (Protoskolizes). Da die Ausbildung der AP Körperachse evolutionsgeschichtlich konserviert über den wingless-related (Wnt)-Signalweg gesteuert wird, wurde in dieser Arbeit die Rolle von Wnt-Signaling bei der Musterbildung von E. multilocularis über molekular- und zellbiologische Studien näher beleuchtet.
Zentraler methodischer Ansatz der vorliegenden Arbeit war ein E. multilocularis Stammzell-Kultursystem, das Primärzellsystem, welches die in vitro-Generierung von Metazestoden-Vesikeln durch Proliferation und Differenzierung von germinativen Zellen (Stammzellen) erlaubt. Über RNA-Sequenzierung wurde zunächst gezeigt, dass in Primärzellkulturen sowohl Markergene für posteriore Entwicklung in Richtung Metazestode wie auch für Anterior-und Protoskolexmarker exprimiert werden. Unter Verwendung von RNA-Interferenz (RNAi) wurde anschließend ein erfolgreicher Knockdown des vermuteten Hauptregulators des kanonischen Wnt-Signalwegs, β Catenin (em-bcat1), erreicht und führte zu einem charakteristischen, sogenannten ‚red dot‘ Phänotyp, dem ersten jemals beschriebenen RNAi Phänotyp für E. multilocularis-Primärzellen. Primärzellkulturen nach em-bcat1 RNAi zeigten eine stark verminderte Fähigkeit, Metazestoden-Vesikel zu bilden sowie eine Überproliferation von germinativen Zellen. Zusätzliche RNA-Seq-Analysen des Transkriptoms von RNAi(em-bcat1)-Kulturen zeigten eine signifikant verringerte Expression von Posterior- und Metazestodenmarkern, während Anterior- und Protoskolexmarker deutlich überexprimiert wurden. Durch umfangreiche Whole-mount-in-situ-Hybridisierung (WMISH)-Experimente wurden diese Daten für eine Reihe ausgewählter Markergene für posteriore (Metazestode; em-wnt1, em-wnt11b, em-muc1) und für anteriore Entwicklung (Protoskolex; em sfrp, em-nou-darake, em npp36, em-frizzled10) verifiziert. In allen genannten Fällen zeigte sich durch Änderung der Polarität eine verminderte Genexpression von Posteriormarkern, während Anteriormarker deutlich erhöht exprimiert wurden. Ähnlich wie bei den verwandten, freilebenden Planarien, führt demnach ein Knockdown des zentralen Wnt-Regulators β-Catenin bei E. multilocularis zu einer anteriorisierten, Anterior- und Protoskolexmarker dominierte Genexpression, welche der posteriorisierten Entwicklung zum Metazestoden entgegenwirkt.
Neben Markergenen für die Ausbildung der AP-Achse wurden in dieser Arbeit auch solche für die medio-laterale (ML)-Körperachse bei Zestoden erstmals beschrieben. So zeigte sich, dass ein Slit-Ortholog (em slit) im E. multilocularis Protoskolex im Bereich der Körper-Mittellinie exprimiert wird und lieferte Hinweise darauf, dass, ähnlich zur Situation bei Planarien, die ML Achse von E. multilocularis durch Morphogengradienten aus slit (Mittellinie) und wnt5 (lateral) definiert wird. Im Metazestoden wird hingegen nur em-slit exprimiert. Der Metazestode besitzt damit als posterior-medianisiertes Gewebe Anlagen zur Polarität zur AP- und ML-Achse, welche erst mit Bildung von Protoskolizes vollständig etabliert werden. Schließlich deuten die Ergebnisse dieser Arbeit darauf hin, dass bei der Wiederherstellung der Körperachsen während der Entwicklung von Protoskolizes Hedgehog (Hh)-Signale entscheidend mitwirken.
Zusammenfassend wurde in dieser Arbeit der zentrale Faktor des kanonischen Wnt Signalwegs, β-Catenin, als Hauptregulator der Entwicklung des tumorartig wachsenden E. multilocularis-Metazestoden identifiziert. Zudem wurde gezeigt, dass zur Metazestodenbildung neben einer Echinococcus-spezifischen Modifikation der AP Körperachse auch eine solche der ML Achse beiträgt. In humanen malignen Tumoren sind der Wnt-, Slit-Robo- und Hh-Signalweg gut erforschte Wirkstofftargets und könnten in Zukunft in ähnlicher Weise für eine zielgerichtete Therapie von AE dienen.
Die alveoläre Echinokokkose (AE), verursacht durch das Metacestoden- Larvenstadium des Fuchsbandwurms Echinococcus multilocularis (E. multilocularis), ist eine lebensbedrohliche Zoonose der nördlichen Hemisphäre mit eingeschränkten therapeutischen Möglichkeiten. Bei der Suche nach neuen Therapeutika haben Mitogen-activated Proteinkinase (MAPK) -Kaskaden als pharmakologische Zielstrukturen aufgrund ihrer essentiellen Rolle bei der Zellproliferation und -differenzierung ein großes Potenzial. In der vorliegenden Arbeit wurden durch BLAST- und reziproke BLAST-Analysen elf potenzielle MAPK Kinase Kinasen (MAP3K), fünf potenzielle MAPK Kinasen (MAP2K) und sechs potenzielle MAPK im E. multilocularis-Genom identifiziert, die teils hoch konserviert sind und in nahezu allen Entwicklungsstadien des Parasiten exprimiert werden. Diese Erkenntnisse lassen auf ein komplexes MAPK-Signaltransduktions- system in E. multilocularis mit großer Bedeutung für den Parasiten schließen. Transkriptomdatenanalysen und Whole Mount in Situ Hybridisierung (WMISH) zeigten, dass emmkkk1 (EmuJ_000389600) als einzige MAP3K neben der Expression in postmitotischen Zellen in besonderem Maße in proliferativen Stammzellen des Parasiten exprimiert wird und somit eine wichtige Rolle bei der Differenzierung von Stammzellen spielen könnte. In Yeast-Two-Hybrid (Y2H) -Wechselwirkungsassays wurden Interaktionen von mehreren upstream- (EmGRB2) und downstream- wirkenden Signalkaskadekomponenten des JNK (EmMKK3, EmMPK3) und ERK (EmMKK3, EmMPK4) -Signalwegs gefunden. Daraus lässt sich schließen, dass EmMKKK1, analog zu seinem humanen Homolog HsM3K1, eine zentrale Rolle bei der Echinococcus-Wachstumsregulation durch Rezeptortyrosinkinasen und vielfältige weitere Funktionen im Parasiten besitzt. Anhand von Erkenntnissen an Platyhelminthes kann daher von einem großen Potenzial dieser neu charakterisierten Signalwege als chemotherapeutische Angriffspunkte ausgegangen werden, wenngleich erste RNA-Interferenz (RNAi)- und Inhibitorstudien an emmkkk1, emmpk1 und emmpk4 keine durchschlagenden Effekte auf das Überleben von Primärzellkulturen und die Bildung von Metacestodenvesikeln zeigten. Zusammenfassend konnte in der vorliegenden Arbeit mit EmMKKK1 und neuen ERK- und JNK-Signalwegen zentrale Komponenten der komplexen MAPK-Signalkaskaden in E. multilocularis identifiziert werden, die höchstwahrscheinlich einen großen Beitrag zur enormen Regenerationsfähigkeit der Echinococcus-Stammzellen leisten und vom Wirt abgeleitete Signale wie Insulin, Epidermaler Wachstumsfaktor (EGF) und Fibroblasten-Wachstumsfaktor (FGF) über EmGRB2 in Proliferationsnetzwerke des Parasiten integrieren. Arzneimittel-Screening-Assays, die auf diese Signalwege abzielen, könnten daher zu alternativen Arzneimitteln führen, die alleine oder in Kombination mit einer bestehenden Chemotherapie (Benzimidazol) die Prognose von für AE-Patienten verbessern könnten.
Post-translational histone modifications (PTMs) such as methylation of lysine residues influence chromatin structure and function. PTMs are involved in different cellular processes such as DNA replication, transcription and cell differentiation. Deregulations of PTM patterns are responsible for a variety of human diseases including acute leukemia. DOT1 enzymes are highly conserved histone methyltransferases that are responsible for methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one single DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, which methylate H3K76 (H3K76 is homologous to H3K79 in other organisms). DOT1A is essential and mediates mono- and di-methylations, whereas DOT1B additionally catalyzes tri-methylation of H3K76. However, a mechanistic understanding how these different enzymatic activities are achieved is lacking. This thesis exploits the fact that trypanosomes possess two DOT1 enzymes with different catalytic properties to understand the molecular basis for the differential product-specificity of DOT1 enzymes. A trypanosomal nucleosome reconstitution system was established to analyze methyltransferase activity under defined in vitro conditions. Homology modeling allowed the identification of critical residues within and outside the catalytic center that modulate product-specificity. Exchange of these residues transferred the product-specificity from one enzyme to the other and revealed regulatory domains adjacent to the catalytic center. This work provides the first evidence that few specific residues in DOT1 enzymes are crucial to catalyze methyl-state-specific reactions. These results have also consequences for the functional understanding of homologous enzymes in other eukaryotes.
Bone Morphogenetic Proteins (BMPs) sind extrazellulär vorkommende Wachstumsfaktoren und werden der Superfamilie der Transforming Growth Factors β (TGF-β) zugeordnet. Entgegen ihrem Namen spielen sie nicht nur eine Rolle bei der Ausbildung und Regeneration der Knochenmatrix, sondern regulieren bereits während der Embryonalentwicklung zahlreiche Abläufe. Unter anderem sind sie an der Festlegung der Körperachsen und Entwicklung der Organanlagen beteiligt. Später steuern sie das Wachstum von Organen und Geweben und sind schließlich im adulten Organismus für deren Homöostase und Regeneration verantwortlich. Bei fast allen Mitgliedern der TGF-β Superfamilie erfolgt die Signalbildung nach derzeitigem Kenntnisstand durch die Bindung an transmembrane Serin/Threonin-Kinaserezeptoren, die in zwei Untergruppen unterteilt werden können. Dabei werden von einem Liganden jeweils zwei Typ I- und zwei Typ II-Rezeptoren gebunden, wodurch ein aktiver Komplex entsteht, der im Inneren der Zelle eine Signalkaskade auslöst.
Um die vielseitigen Aufgaben der BMPs spezifisch vermitteln zu können, gibt es zahlreiche Mechanismen, die Signalbildung stringent neben der Ligand-Rezeptor-Interaktion zu regulieren. Die Small Mothers Against Decapentaplegic (Smad)-Signalkaskade im Zellinneren wird beispielsweise durch die Interaktion der inhibitorischen Smads mit rezeptor-regulierten Smads oder durch den proteasomalen Abbau der rezeptor-regulierten Smads durch die Bindung von Ubiquitin-Ligasen der Smurf-Familie beeinflusst. Auch auf Membranebene besteht die Möglichkeit der negativen Signalmodulation durch Pseudorezeptoren oder der Verstärkung der Signalbildung durch positive Effektoren wie beispielsweise aktivitätssteigernde Co-Rezeptoren.
Ein Charakteristikum der TGF-β Superfamilie stellt jedoch die Vielzahl an sekretierten, löslichen Modulatorproteinen dar. Die meist glykosylierten Proteine üben, bis auf wenige Ausnahmen, einen antagonistischen Effekt auf die BMPs aus. Bei dem BMP-spezifischen Modulatorprotein Twisted gastrulation handelt es sich um ein extrazelluläres Glykoprotein, das im Gegensatz zu den meisten anderen BMP-Modulatoren jedoch eine duale Funktion als Besonderheit aufweist. Es zeigt zum einen eine anti-BMP-Wirkung, indem es den BMP-inhibierenden Einfluss von Chordin durch Bildung eines stabilen ternären Komplexes verstärkt; andererseits kann Twisted gastrulation in Gegenwart spezifischer Metalloproteasen eine proteolytische Spaltung von Chordin und die anschließende Freisetzung von aktivem BMP fördern und so eine BMP-Aktivität vermittelnde Wirkung aufweisen. Twisted gastrulation hat keine beziehungsweise nur eine äußerst geringe Homologie zu anderen (Modulator)Proteinen. Um daher den komplexen Wirkmechanismus detailliert molekular beschreiben zu können, ist die Aufklärung der Struktur /Funktions-beziehungen essentiell.
Im Rahmen dieser Arbeit konnten unterschiedliche Expressionsstrategien für die rekombinante Herstellung von Twisted gastrulation etabliert werden, welche eine umfassende Charakterisierung des Proteins in vitro ermöglichen. Erste Kristallisationsversuche von isoliertem Twisted gastrulation für die Aufklärung der dreidimensionalen Struktur mittels Röntgenbeugung verliefen ohne Erfolg, allerdings gelang die Präparation stabiler ternärer Proteinkomplexe für weiterführende Kristallisationsansätze. Hochdurchsatzverfahren für die Expression und Interaktionsanalyse erlauben zudem die Untersuchung einer Vielzahl von Twisted gastrulation-Proteinvarianten. Auf diese Weise konnten Aminosäuren identifiziert werden, die an der Wechselwirkung von Twisted gastrulation mit seinem Interaktionspartner BMP 2 beteiligt sind. Dies ermöglichte eine detaillierte Lokalisation des Bindeepitops im N-terminalen Bereich von Twisted gastrulation. Dabei konnte auch gezeigt werden, dass die Glykosylierung von Twisted gastrulation für die Wechselwirkung mit BMP-2 von Bedeutung ist.
Eine experimentelle Strukturanalyse von Twisted gastrulation für die detaillierte Aufklärung des Mechanismus der Interaktion mit BMP-2 und anderen Modulatorproteinen bleibt allerdings weiterhin aufgrund der Einzigartigkeit dieses Modulatorproteins zwingend erforderlich. Für eine Fortsetzung der Untersuchungen bietet der stabile ternäre Komplex eine gute Voraussetzung in Hinblick auf weitere Kristallisationsansätze.
In eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription – the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompanied by processes mediating nucleosome destabilisation, including post-translational histone modifications (PTMs) or exchange of canonical histones by their variant forms. To the best of our knowledge, acetylation of histones has the highest capability to induce chromatin opening. The lysine modification can destabilise histone-DNA interactions within a nucleosome and can serve as a binding site for various chromatin remodelers that can modify the nucleosome composition. For example, H4 acetylation can impede chromatin folding and can stimulate the exchange of canonical H2A histone by its variant form H2A.Z at transcription start sites (TSSs) in many eukaryotes, including humans. As histone H4, H2A.Z can be post-translationally acetylated and as acetylated H4, acetylated H2A.Z is enriched at TSSs suggested to be critical for transcription. However, thus far, it has been difficult to study the cause and consequence of H2A.Z acetylation.
Even though, genome-wide chromatin profiling studies such as ChIP-seq have already revealed the genomic localisation of many histone PTMs and variant proteins, they can only be used to study individual chromatin marks and not to identify all factors important for establishing a distinct chromatin structure. This would require a comprehensive understanding of all marks associated to a specific genomic locus. However, thus far, such analyses of locus-specific chromatin have only been successful for repetitive regions, such as telomeres.
In my doctoral thesis, I used the unicellular parasite Trypanosoma brucei as a model system for chromatin biology and took advantage of its chromatin landscape with TSSs comprising already 7% of the total T. brucei genome (humans: 0.00000156%). Atypical for a eukaryote, the protein-coding genes are arranged in long polycistronic transcription units (PTUs). Each PTU is controlled by its own ~10 kb-wide TSS, that lies upstream of the PTU. As observed in other eukaryotes, TSSs are enriched with nucleosomes containing acetylated histones and the histone variant H2A.Z. This is why I used T. brucei to particularly investigate the TSS-specific chromatin structures and to identify factors involved in H2A.Z deposition and transcription regulation in eukaryotes. To this end, I established an approach for locus-specific chromatin isolation that would allow me to identify the TSSs- and non-TSS-specific chromatin marks. Later, combining the approach with a method for quantifying lysine-specific histone acetylation levels, I found H2A.Z and H4 acetylation enriched in TSSs-nucleosomes and mediated by the histone acetyltransferases HAT1 and HAT2. Depletion of HAT2 reduced the levels of TSS-specific H4 acetylation, affected targeted H2A.Z deposition and shifted the sites of transcription initiation. Whereas HAT1 depletion had only a minor effect on H2A.Z deposition, it had a strong effect on H2A.Z acetylation and transcription levels. My findings demonstrate a clear link between histone acetylation, H2A.Z deposition and transcription initiation in the early diverged unicellular parasite T. brucei, which was thus far not possible to determine in other eukaryotes. Overall, my study highlights the usefulness of T. brucei as a model system for studying chromatin biology. My findings allow the conclusion that H2A.Z regardless of its modification state defines sites of transcription initiation, whereas H2A.Z acetylation is essential co-factor for transcription initiation. Altogether, my data suggest that TSS-specific chromatin establishment is one of the earliest developed mechanisms to control transcription initiation in eukaryotes.
New insights into the histone variant H2A.Z incorporation pathway in \(Trypanosoma\) \(brucei\)
(2022)
The histone variant H2A.Z is a key player in transcription regulation in eukaryotes. Histone acetylations by the NuA4/TIP60 complex are required to enable proper incorporation of the histone variant and to promote the recruitment of other complexes and proteins required for transcription initiation. The second key player in H2A.Z-mediated transcription is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant. By the time this project started little was known about H2A.Z in the unicellular parasite Trypanosoma brucei. Like in other eukaryotes H2A.Z was exclusively found in the transcription start sites of the polycistronic transcription units where it keeps the chromatin in an open conformation to enable RNA-polymerase II-mediated transcription. Previous studies showed the variant colocalizing with an acetylation of lysine on histone H4 and a methylation of lysine 4 on histone H3. Data indicated that HAT2 is linked to H2A.Z since it is required for acetylation of lyinse 10 on histone H4. A SWR1-like complex and a complex homologous to the NuA4/TIP60 could not be identified yet. This study aimed at identifying a SWR1-like remodelling complex in T. brucei and at identifying a protein complex orthologous to NuA4/TIP60 as well as at answering the question whether HAT2 is part of this complex or not. To this end, I performed multiple mass spectrometry-coupled co-Immunoprecipitation assays with potential subunits of a SWR1 complex, HAT2 and a putative homolog of a NuA4/TIP60 subunit. In the course of these experiments, I was able to identify the TbSWR1 complex. Subsequent cell fractionation and chromatin immunoprecipitation-coupled sequencing analysis experiments confirmed, that this complex is responsible for the incorporation of the histone variant H2A.Z in T. brucei. In addition to this chromatin remodelling complex, I was also able to identify two histone acetyltransferase complexes assembled around HAT1 and HAT2. In the course of my study data were published by the research group of Nicolai Siegel that identified the histone acetyltransferase HAT2 as being responsible for histone H4 acetylation, in preparation to promote H2A.Z incorporation. The data also indicated that HAT1 is responsible for acetylation of H2A.Z. According to the literature, this acetylation is required for proper transcription initiation. Experimental data generated in this study indicated, that H2A.Z and therefore TbSWR1 is involved in the DNA double strand break response of T. brucei. The identification of the specific complex composition of all three complexes provided some hints about how they could interact with each other in the course of transcription regulation and the DNA double strand break response. A proximity labelling approach performed with one of the subunits of the TbSWR1 complex identified multiple transcription factors, PTM writers and proteins potentially involved in chromatin maintenance. Overall, this work will provide some interesting insights about the composition of the complexes involved in H2A.Z incorporation in T. brucei. Furthermore, it is providing valuable information to set up experiments that could shed some light on RNA-polymerase II-mediated transcription and chromatin remodelling in T. brucei in particular and Kinetoplastids in general.
Im Rahmen dieser Arbeit wurde zur Untersuchung der Rolle von PCGF6 und E2F6 in murinen embryonalen Stammzellen (mESCs) und zu Beginn der Differenzierung Knockout-Zelllinien beider Proteine und in Kombination durch das CRISPR/Cas9n Systems erstellt. Die Charakterisierung dieser Knockout-Zelllinien erfolgte durch Wachstumsanalysen in mESCs und differenzierenden murinen Stammzellen (EBs). Es konnte festgestellt werden, dass Zellen des Pcgf6 Knockout (KO) kleinere Ebs bildeten, die zudem nicht über einen längeren Zeitraum in Kultur gehalten werden konnten. Zur Klärung dieses spezifischen Phänotyps wurden weitere molekulare Analysen mittels Durchflusszytometrie durchgeführt. Zellen des Pcgf6 KO wiesen während der Differenzierung einen erhöhten Anteil an Zellen in der G1-Phase sowie eine erhöhte apoptotische Frequenz auf. Unterstützend zur Annahme eines Zellzyklusdefekts wurden RNASeq-Daten analysiert. Die Auswertung ergab, dass Zellen des Pcgf6 KO zeitlich unkontrolliert differenzierten. Die Auswertung differenziell exprimierter Gene ergab zudem, dass die Expression von E2f6, ein Regulator des Zellzyklus und weitere Untereinheit des nicht-kanonischen PRC1.6, in mESC und EB-Kulturen herunter reguliert war, während Zellzyklus-spezifische Targets der E2F6-abhängigen Genregulation an Tag 2 der Differenzierung hochreguliert waren. Diese Ergebnisse deuteten darauf hin, dass eine Deletion von Pcgf6 zu Beginn der Differenzierung Auswirkungen auf eine E2F6-abhängige Zellzyklusregulation haben muss. Auf Grund einer zu diesem Zeitpunkt aufgetretenen Mykoplasmenkontamination in der Zellkultur musste die Pcgf6 KO-Zelllinie neu erstellt werden. Zusätzlich wurden KO-Zelllinien von E2f6 in Wt und in Pcgf6 KO mESCs erstellt. Die anschließende Wiederholung der zellulären Charakterisierung des Phänotyps ergab, dass EB-Kulturen des Pcgf6 KO und des Doppelknockout von Pcgf6 und E2f6 (dKOPcgf6/E2f6) während der Differenzierung eine verringerte Zellzahl aufwiesen. Die molekularen Charakterisierungen des Phänotyps ergaben, dass der erhöhte Anteil an Zellen in der G1-Phase des Pcgf6 KO, welche vor der Mykoplasmenkontamination detektiert wurde, nicht reproduziert werden konnte. Es wurde jedoch eine erhöhte Frequenz an Zellen in der G2-Phase des dKOPcgf6/E2f6 in der mESC-und EB-Kultur ermittelt. Die Analyse der apoptotischen Frequenz in allen KO-Zelllinien zeigte einen Anstieg während der Differenzierung. Zur Unterstützung der bis dahin durchgeführte Analysen wurden RNASeq-Daten zweier Publikationen zu PCGF6 und E2F6 herangezogen (Qui et al., 2021; Dahlet et al, 2021). Gene Ontology Enrichtment Analysen dieser Daten ergaben, dass in beiden KO-Zelllinien in mESCs unabhängig voneinander Keimbahngene hochreguliert waren. Beide KO-Zelllinien zeigten aber auch eine Schnittmenge gemeinsam hochregulierter Keimbahngene. In Anlehnung an diese Veröffentlichungen, ergaben Genexpressionsanalysen einzelner Keimbahngene, dass ein Verlust von E2f6 zu einer De-Repression von Genen führt, die eine Bindestelle für E2F6 besitzen. Der Verlust von Pcgf6 hingegen hatte keine Auswirkung auf Expression dieser Targets. Diese Ergebnisse unterstützen die Vermutung, dass es unterschiedliche Subkomplexe gibt, die die Expression von Keimbahngenen in mESC- und EB-Kulturen regulieren.
African trypanosomiasis is a disease endemic to sub-Saharan Africa. It affects humans as well as wild and domestic animals. The human form of the disease is known as sleeping sickness and the animal form as nagana, which are usually fatal if left untreated. The cause of African trypanosomiasis is the unicellular parasite Trypanosoma brucei. During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host the parasite multiplies as bloodstream form (BSF) extracellularly in the bloodstream or the lymphatic system. Survival of BSF parasites relies on immune evasion by antigenic variation of surface proteins because its extracellular lifestyle leads to direct exposure to immune responses. At any given time each BSF cell expresses a single type of variant surface glycoprotein (VSG) on its surface from a large repertoire. The active VSG is transcribed from one of 15 specialized subtelomeric domains, termed bloodstream expression sites (BESs). The remaining 14 BESs are silenced. This monoallelic expression and periodic switching of the expressed VSG enables to escape the immune response and to establish a persistent infection in the mammalian host. During developmental differentiation from BSF to the insect vector-resident procyclic form (PCF), the active BES is transcriptionally silenced to stop VSG transcription. Thus, all 15 BESs are inactive in the PCF cells as surface protein expression is developmentally regulated.
Previous reports have shown that the telomere complex components TbTRF, TbRAP1 and TbTIF2 are involved in VSG transcriptional regulation. However, the precise nature of their contribution remains unclear. In addition, no information is available about the role of telomeres in the initiation and regulation of developmental BES silencing. To gain insights into the regulatory mechanisms of telomeres on VSG transcription and developmental repression it is therefore essential to identify the complete composition of the trypanosome telomere complex.
To this end, we used two complementary biochemical approaches and quantitative label-free interactomics to determine the composition of telomere protein complexes in T. brucei. Firstly, using a telomeric pull-down assay we found 17 potential telomere-binding proteins including the known telomere-binding proteins TbTRF and TbTIF2. Secondly, by performing a co-immunoprecipitation experiment to elucidate TbTRF interactions we co-purified five proteins. All of these five proteins were also enriched with telomeric DNA in the pull-down assay.
To validate these data, I characterized one of the proteins found in both experiments (TelBP1). In BSF cells, TelBP1 co-localizes with TbTRF and interacts with already described telomere-binding proteins such as TbTRF, TbTIF2 and TbRAP1 indicating that TelBP1 is a novel component of the telomere complex in trypanosomes. Interestingly, protein interaction studies in PCF cells suggested a different telomere complex composition compared to BSF cells. In contrast to known members of the telomere complex, TelBP1 is dispensable for cell viability indicating that its function might be uncoupled from the known telomere-binding proteins. Overexpression of TelBP1 had also no effect on cell viability, but led to the discovery of two additional shorter isoforms of TelBP1. However, their source and function remained elusive.
Although TelBP1 is not essential for cell viability, western blot analysis revealed a 4-fold upregulation of TelBP1 in the BSF stage compared to the PCF stage supporting the concept of a dynamic telomere complex composition. We observed that TelBP1 influences the kinetics of transcriptional BES silencing during developmental transition from BSF to PCF. Deletion of TelBP1 caused faster BES silencing compared to wild-type parasites.
Taken together, TelBP1 function illustrates that developmental BES silencing is a fine-tuned process, which involves stage-specific changes in telomere complex formation.
The protozoan parasite Trypanosoma brucei is the causal agent of sleeping sickness and besides its epidemiological importance it has been used as model organism for the study of many aspects of cellular and molecular biology especially the post-transcriptional control of gene expression.
Several studies in the last 30 years have shown the importance of mRNA processing and stability for gene regulation. In T. brucei genes are unusually arranged in polycistronic transcription units (PTUs) and a coupled process of trans-splicing and polyadenylation produces the mature mRNAs. Both processes, mRNA processing and stability, cannot completely explain the control of gene expression in the different life cycle stages analyzed in T. brucei so far.
In recent years, the relevance of expression regulation at the level of translation has become evident in other eukaryotes. Therefore, in the first part of my thesis I studied the impact of translational regulation by means of a genome-wide ribosome profiling approach. My data suggest that translational efficiencies vary between life cycle stages of the parasite as well as between genes within one life cycle stage. Furthermore, using ribosome profiling I was able to identify many new putative un-annotated coding sequences and to evaluate the coding potential of upstream open reading frames (uORF). Comparing my results with previously published proteomic and RNA interference (RNAi) target sequencing (RIT-seq) datasets allowed me to validate some of the new coding sequences and to evaluate their relevance for the fitness of the parasite.
In the second part of my thesis I used the transcriptomic and translatomic profiles obtained from the ribosome profiling analysis for the identification of putative non-coding RNAs (ncRNAs). These results led to the analysis of the coding potential in the regions upstream and downstream of the expressed variant surface glycoprotein (VSG), which is outlined in the third part of the results section. The region upstream of the VSG, the co-transposed region (CTR), has been implicated in an increase of the in situ switching rate upon its deletion. The ribosome profiling results indicated moderate transcription but not translation in this region. These results raised the possibility that the CTR may be transcribed into ncRNA. Therefore, in the third part of my thesis, I performed a primary characterization of the CTR-derived transcripts based on northern blotting and RACE. The results suggested the presence of a unique transcript species of about 1,200 nucleotides (nt) and polyadenylated at the 3’-end of the sequence.
The deletion of the CTR sequence promoting and increase of the in situ switching rates was performed around 20 years ago by means of inserting reporter genes. With the recent development of endonuclease-based tools for genome editing, it is now possible to delete sequences in a marker-free way. In the fourth part of my thesis, I show the results on the implementation of the highly efficient genome-editing CRISPR-Cas9 system in T. brucei using episomes. As a proof of principle, I inserted the sequence coding for the enhanced green fluorescent protein (eGFP) at the end of the SCD6 coding sequence (CDS). Fluorescent cells were observed as early as two days after transfection. Therefore, after the successful set up of the CRISPR-Cas9 system it will be possible to modify genomic regions with more relevance for the biology of the parasite, such as the substitution of codons present in gene tandem arrays.
The implementation of ribosome profiling in T. brucei opens the opportunity for the study of translational regulation in a genome-wide scale, the re-annotation of the currently available genome, the search for new putative coding sequences, the detection of putative ncRNAs, the evaluation of the coding potential in uORFs and the role of unstranslated regions (UTRs) in the regulation of translation. In turn, the implementation of the CRISPR-Cas9 system offers the possibility to manipulate the genome of the parasite at a nucleotide resolution and without the need of including resistant makers. The CRISPR-Cas9 system is a powerful tool for editing ncRNAs, UTRs, multicopy gene families and CDSs keeping their endogenous UTRs. Moreover, the system can be used for the modification of both alleles after just one round of transfection and of codons coding for amino acids carrying post-translational modifications (PTMs) among other possibilities.
Characterization of a novel putative factor involved in host adaptation in Trypanosoma brucei
(2016)
Trypanosomes are masters of adaptation to different host environments
during their complex life cycle. Large-scale proteomic approaches provide information on changes at
the cellular level in a systematic way. However, a detailed work on single components is necessary
to understand the adaptation mechanisms on a molecular level. Here we have performed a detailed
characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation
factor (Tb927.11.2400) identified previously in a SILAC-based comparative proteome study.
Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form
(PCF) stage specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin like
(TbFlabarinL) and demonstrate that it is a result of a gene duplication event, which occurred in
African trypanosomes. TbFlabarinL is not essential for growth of the parasites under cell culture
conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We
generated a TbFlabarinL-specific antibody and showed that it localizes in the flagellum. The
co-immunoprecipitation experiment together with a biochemical cell fractionation indicated a dual
association of TbFlabarinL with the flagellar
membrane and the components of the paraflagellar rod.