Refine
Has Fulltext
- yes (18)
Is part of the Bibliography
- yes (18)
Document Type
- Doctoral Thesis (18)
Keywords
- Klimaänderung (6)
- Klima (4)
- Modell (3)
- Modellierung (3)
- Anthropogene Klimaänderung (2)
- Bodenfeuchte (2)
- Fernerkundung (2)
- Klimamodell (2)
- Klimatologie (2)
- Klimawandel (2)
Institute
Sonstige beteiligte Institutionen
- Deutscher Akademischer Austauschdienst (DAAD) (1)
- Deutsches Klimaservice Zentrum (GERICS) (1)
- Deutsches Zentrum für Luft- und Raumfahrt (1)
- Lehrstuhl für Fernerkundung der Uni Würzburg, in Kooperation mit dem Deutschen Fernerkundungsdatenzentrum (DFD) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) (1)
- Université d'Abomey-Calavi, Benin (1)
Das Ziel dieser Arbeit war neue Eingangsdaten für die Landoberflächenbeschreibung des regionalen Klimamodells REMO zu finden und ins Modell zu integrieren, um die Vorhersagequalität des Modells zu verbessern. Die neuen Daten wurden so in das Modell eingebaut, dass die bisherigen Daten weiterhin als Option verfügbar sind. Dadurch kann überprüft werden, ob und in welchem Umfang sich die von jedem Klimamodell benötigten Rahmendaten auf Modellergebnisse auswirken. Im Zuge der Arbeit wurden viele unterschiedliche Daten und Methoden zur Generierung neuer Parameter miteinander verglichen, denn neben dem Ersetzen der konstanten Eingangswerte für verschiedene Oberflächenparameter und den damit verbundenen Änderungen wurden als zusätzliche Verbesserung auch Veränderungen an der Parametrisierung des Bodens speziell in Hinblick auf die Bodentemperaturen in REMO vorgenommen. Im Rahmen dieser Arbeit wurden die durch die verschiedenen Änderungen ausgelösten Auswirkungen für das CORDEX-Gebiet EUR-44 mit einer Auflösung von ca. 50km und für das in dem darin eingebetteten neu definierten Deutschlandgebiet GER-11 mit einer Auflösung von ca. 12km getestet sowie alle Änderungen anhand von verschiedenen Beobachtungsdatensätzen validiert.
Die vorgenommenen Arbeiten gliederten sich in drei Hauptteile. Der erste Teil bestand in dem vom eigentlichen Klimamodell unabhängigen Vergleich der verschiedenen Eingangsdaten auf unterschiedlichen Auflösungen und deren Performanz in allen Teilen der Erde, wobei ein besonderer Fokus auf der Qualität in den späteren Modellgebieten lag. Unter Berücksichtigung der Faktoren, wie einer globalen Verfügbarkeit der Daten, einer verbesserten räumlichen Auflösung und einer kostenlosen Nutzung der Daten sowie verschiedener Validationsergebnissen von anderen Studien, wurden in dieser Arbeit vier neue Topographiedatensätze (SRTM, ALOS, TANDEM und ASTER) und drei neue Bodendatensätze (FAOn, Soilgrid und HWSD) für die Verwendung im Präprozess von REMO aufbereitet und miteinander sowie mit den bisher in REMO verwendeten Daten verglichen. Auf Grundlage dieser Vergleichsstudien schieden bei den Topographiedaten die verwendeten Datensatz-Versionen von SRTM, ALOS und TANDEM für die in dieser Arbeit durchgeführten REMO-Läufe aus. Bei den neuen Bodendatensätzen wurde ausgenutzt, dass diese verschiedenen Bodeneigenschaften für unterschiedliche Tiefen als Karten zur Verfügung stellen. In REMO wurden bisher alle benötigten Bodenparameter abhängig von fünf verschiedenen Bodentexturklassen und einer zusätzlichen Torfklasse ausgewiesen und als konstant über die gesamte Modellbodensäule (bis ca. 10m) angenommen. Im zweiten Teil wurden auf Basis der im ersten Teil ausgewählten neuen Datensätze und den neu verfügbaren Bodenvariablen verschiedene Sensitivitätsstudien über das Beispieljahr 2000 durchgeführt. Dabei wurden verschiedene neue Parametrisierungen für die bisher aus der Textur abgeleiteten Bodenvariablen und die Parametrisierung von weiteren hydrologischen und thermalen Bodeneigenschaften verglichen. Ferner wurde aufgrund der neuen nicht über die Tiefe konstanten Bodeneigenschaften eine neue numerische Methode zur Berechnung der Bodentemperaturen der fünf Schichten in REMO getestet, welche wiederum andere Anpassungen erforderte. Der Test und die Auswahl der verschiedenen Datensatz- und Parametrisierungsversionen auf die Modellperformanz wurde in drei Experimentpläne unterteilt. Im ersten Plan wurden die Auswirkungen der ausgewählten Topographie- und Bodendatensätze überprüft. Der zweite Plan behandelte die Unterschiede der verschiedenen Parametrisierungsarten der Bodenvariablen hinsichtlich der verwendeten Variablen zur Berechnung der Bodeneigenschaften, der über die Tiefe variablen oder konstanten Eigenschaften und der verwendeten Berechnungsmethode der Bodentemperaturänderungen. Durch die Erkenntnisse aus diesen beiden Experimentplänen, die für beide Untersuchungsgebiete durchgeführt wurden, ergaben sich im dritten Plan weitere Parametrisierungsänderungen. Alle Änderungen dieses dritten Experimentplans wurden sukzessiv getestet, sodass der paarweise Vergleich von zwei aufeinanderfolgenden Modellläufen die Auswirkungen der Neuerung im jeweils zweiten Lauf widerspiegelt. Der letzte Teil der Arbeit bestand aus der Analyse von fünf längeren Modellläufen (2000-2018), die zur Überprüfung der Ergebnisse aus den Sensitivitätsstudien sowie zur Einschätzung der Performanz in weiteren teilweise extremen atmosphärischen Bedingungen durchgeführt wurden. Hierfür wurden die bisherige Modellversion von REMO (id01) für die beiden Untersuchungsgebiete EUR-44 und GER-11 als Referenzläufe, zwei aufgrund der Vergleichsergebnisse von Experimentplan 3 selektierte Modellversionen (id06 und id15a für GER-11) sowie die finale Version (id18a für GER-11), die alle vorgenommenen Änderungen dieser Arbeit enthält, ausgewählt.
Es stellte sich heraus, dass sowohl die neuen Topographiedaten als auch die neuen Bodendaten große Differenzen zu den bisherigen Daten in REMO haben. Zudem änderten sich die von diesen konstanten Eingangsdaten abgeleiteten Hilfsvariablen je nach verwendeter Parametrisierung sehr deutlich. Dies war besonders gut anhand der Bodenparameter zu erkennen. Sowohl die räumliche Verteilung als auch der Wertebereich der verschiedenen Modellversionen unterschieden sich stark. Eine Einschätzung der Qualität der resultierenden Parameter wurde jedoch dadurch erschwert, dass auch die verschiedenen zur Validierung herangezogenen Bodendatensätze für diese Parameter deutlich voneinander abweichen. Die finale Modellversion id18a ähnelte trotz der umfassenden Änderungen in den meisten Variablen den Ergebnissen der bisherigen REMO-Version. Je nach zeitlicher und räumlicher Aggregation sowie unterschiedlichen Regionen und Jahreszeiten wurden leichte Verbesserungen, aber auch leichte Verschlechterungen im Vergleich zu den klimatologischen Validationsdaten festgestellt. Größere Veränderungen im Vergleich zur bisherigen Modellversion konnten in den tieferen Bodenschichten aufgezeigt werden, welche allerdings aufgrund von fehlenden Validationsdaten nicht beurteilt werden konnten. Für alle 2m-Temperaturen konnte eine tendenzielle leichte Erwärmung im Vergleich zum bisherigen Modelllauf beobachtet werden, was sich einerseits negativ auf die ohnehin durchschnittlich zu hohe Minimumtemperatur, aber andererseits positiv auf die bisher zu niedrige Maximumtemperatur des Modells in den betrachteten Gebieten auswirkte. Im Niederschlagssignal und in den 10m-Windvariablen konnten keine signifikanten Änderungen nachgewiesen werden, obwohl die neue Topographie an manchen Stellen im Modellgebiet deutlich von der bisherigen abweicht. Des Weiteren variierte das Ranking der verschiedenen Modellversionen jeweils nach dem angewendeten Qualitätsindex.
Um diese Ergebnisse besser einordnen zu können, muss berücksichtigt werden, dass die neuen Daten für Modellgebiete mit 50 bzw. 12km räumlicher Auflösung und der damit verbundenen hydrostatischen Modellversion getestet wurden. Zudem sind vor allem in Fall der Topographie die bisher enthaltenen GTOPO-Daten (1km Auflösung) für die Aggregation auf diese gröbere Modellauflösung geeignet. Die bisherigen Bodendaten stoßen jedoch mit 50km Auflösung bereits an ihre Grenzen. Zusätzlich ist zu beachten, dass nicht nur die Mittelwerte dieser Daten, sondern auch deren Subgrid-Variabilität als Variablen im Modell für verschiedene Parametrisierungen verwendet werden. Daher ist es essentiell, dass die Eingangsdaten eine deutlich höhere Auflösung bereitstellen als die zur Modellierung definierte Auflösung. Für lokale Klimasimulationen mit Auflösungen im niedrigen Kilometerbereich spielen auch die Vertikalbewegungen (nicht-hydrostatische Modellversion) eine wichtige Rolle, die stark von der Topographie sowie deren horizontaler und vertikaler Änderungsrate beeinflusst werden, was die in dieser Arbeit eingebauten wesentlich höher aufgelösten Daten für die zukünftige Weiterentwicklung von REMO wertvoll machen kann.
The detrimental impacts of climate variability on water, agriculture, and food resources in East Africa underscore the importance of reliable seasonal climate prediction. To overcome this difficulty RARIMAE method were evolved. Applications RARIMAE in the literature shows that amalgamating different methods can be an efficient and effective way to improve the forecasts of time series under consideration. With these motivations, attempt have been made to develop a multiple linear regression model (MLR) and a RARIMAE models for forecasting seasonal rainfall in east Africa under the following objectives:
1. To develop MLR model for seasonal rainfall prediction in East Africa.
2. To develop a RARIMAE model for seasonal rainfall prediction in East Africa.
3. Comparison of model's efficiency under consideration
In order to achieve the above objectives, the monthly precipitation data covering the period from 1949 to 2000 was obtained from Climate Research Unit (CRU). Next to that, the first differenced climate indices were used as predictors.
In the first part of this study, the analyses of the rainfall fluctuation in whole Central- East Africa region which span over a longitude of 15 degrees East to 55 degrees East and a latitude of 15 degrees South to 15 degrees North was done by the help of maps. For models’ comparison, the R-squared values for the MLR model are subtracted from the R-squared values of RARIMAE model. The results show positive values which indicates that R-squared is improved by RARIMAE model. On the other side, the root mean square errors (RMSE) values of the RARIMAE model are subtracted from the RMSE values of the MLR model and the results show negative value which indicates that RMSE is reduced by RARIMAE model for training and testing datasets.
For the second part of this study, the area which is considered covers a longitude of 31.5 degrees East to 41 degrees East and a latitude of 3.5 degrees South to 0.5 degrees South. This region covers Central-East of the Democratic Republic of Congo (DRC), north of Burundi, south of Uganda, Rwanda, north of Tanzania and south of Kenya. Considering a model constructed based on the average rainfall time series in this region, the long rainfall season counts the nine months lead of the first principal component of Indian sea level pressure (SLP_PC19) and the nine months lead of Dipole Mode Index (DMI_LR9) as selected predictors for both statistical and predictive model. On the other side, the short rainfall season counts the three months lead of the first principal component of Indian sea surface temperature (SST_PC13) and the three months lead of Southern Oscillation Index (SOI_SR3) as predictors for predictive model. For short rainfall season statistical model SAOD current time series (SAOD_SR0) was added on the two predictors in predictive model. By applying a MLR model it is shown that the forecast can explain 27.4% of the total variation and has a RMSE of 74.2mm/season for long rainfall season while for the RARIMAE the forecast explains 53.6% of the total variation and has a RMSE of 59.4mm/season. By applying a MLR model it is shown that the forecast can explain 22.8% of the total variation and has a RMSE of 106.1 mm/season for short rainfall season predictive model while for the RARIMAE the forecast explains 55.1% of the total variation and has a RMSE of 81.1 mm/season.
From such comparison, a significant rise in R-squared, a decrease of RMSE values were observed in RARIMAE models for both short rainfall and long rainfall season averaged time series. In terms of reliability, RARIMAE outperformed its MLR counterparts with better efficiency and accuracy. Therefore, whenever the data suffer from autocorrelation, we can go for MLR with ARIMA error, the ARIMA error part is more to correct the autocorrelation thereby improving the variance and productiveness of the model.
Bewertung und Auswirkungen der Simulationsgüte führender Klimamoden in einem Multi-Modell Ensemble
(2013)
Der rezente und zukünftige Anstieg der atmosphärischen Treibhausgaskonzentration bedeutet für das terrestrische Klimasystem einen grundlegenden Wandel, der für die globale Gesellschaft schwer zu bewältigende Aufgaben und Herausforderungen bereit hält. Eine effektive, rühzeitige Anpassung an diesen Klimawandel profitiert dabei enorm von möglichst genauen Abschätzungen künftiger Klimaänderungen.
Das geeignete Werkzeug hierfür sind Gekoppelte Atmosphäre Ozean Modelle (AOGCMs). Für solche Fragestellungen müssen allerdings weitreichende Annahmen über die zukünftigen klimarelevanten Randbedingungen getroffen werden. Individuelle Fehler dieser Klimamodelle, die aus der nicht perfekten Abbildung der realen Verhältnisse und Prozesse resultieren, erhöhen die Unsicherheit langfristiger Klimaprojektionen. So unterscheiden sich die Aussagen verschiedener AOGCMs im Hinblick auf den zukünftigen Klimawandel insbesondere bei regionaler Betrachtung, deutlich. Als Absicherung gegen Modellfehler werden üblicherweise die Ergebnisse mehrerer AOGCMs, eines Ensembles an Modellen, kombiniert. Um die Abschätzung des Klimawandels zu präzisieren, wird in der vorliegenden Arbeit der Versuch unternommen, eine Bewertung der Modellperformance der 24 AOGCMs, die an der dritten Phase des Vergleichsprojekts für gekoppelte Modelle (CMIP3) teilgenommen haben, zu erstellen. Auf dieser Basis wird dann eine nummerische Gewichtung für die Kombination des Ensembles erstellt. Zunächst werden die von den AOGCMs simulierten Klimatologien für einige
grundlegende Klimaelemente mit den betreffenden klimatologien verschiedener Beobachtungsdatensätze quantitativ abgeglichen. Ein wichtiger methodischer Aspekt
hierbei ist, dass auch die Unsicherheit der Beobachtungen, konkret Unterschiede zwischen verschiedenen Datensätzen, berücksichtigt werden. So zeigt sich, dass die Aussagen, die aus solchen Ansätzen resultieren, von zu vielen Unsicherheiten in den Referenzdaten beeinträchtigt werden, um generelle Aussagen zur Qualität von AOGCMs zu treffen. Die Nutzung der Köppen-Geiger Klassifikation offenbart jedoch, dass die prinzipielle Verteilung der bekannten Klimatypen im kompletten CMIP3 in vergleichbar guter Qualität reproduziert wird. Als Bewertungskriterium wird daher hier die Fähigkeit der AOGCMs die großskalige natürliche Klimavariabilität, konkret die hochkomplexe gekoppelte
El Niño-Southern Oscillation (ENSO), realistisch abzubilden herangezogen. Es kann anhand verschiedener Aspekte des ENSO-Phänomens gezeigt werden, dass nicht alle AOGCMs hierzu mit gleicher Realitätsnähe in der Lage sind. Dies steht im Gegensatz zu den dominierenden Klimamoden der Außertropen, die modellübergreifend überzeugend repräsentiert werden. Die wichtigsten Moden werden, in globaler Betrachtung, in verschiedenen Beobachtungsdaten über einen neuen Ansatz identifiziert. So können für einige bekannte Zirkulationsmuster neue Indexdefinitionen gewonnen werden, die sich sowohl als äquivalent zu den Standardverfahren erweisen und im Vergleich zu diesen zudem eine deutliche Reduzierung
des Rechenaufwandes bedeuten. Andere bekannte Moden werden dagegen als weniger bedeutsame, regionale Zirkulationsmuster eingestuft. Die hier vorgestellte
Methode zur Beurteilung der Simulation von ENSO ist in guter Übereinstimmung mit anderen Ansätzen, ebenso die daraus folgende Bewertung der gesamten Performance
der AOGCMs. Das Spektrum des Southern Oscillation-Index (SOI) stellt somit eine aussagekräftige Kenngröße der Modellqualität dar.
Die Unterschiede in der Fähigkeit, das ENSO-System abzubilden, erweisen sich als signifikante Unsicherheitsquelle im Hinblick auf die zukünftige Entwicklung einiger fundamentaler und bedeutsamer Klimagrößen, konkret der globalen Mitteltemperatur,
des SOIs selbst, sowie des indischen Monsuns. Ebenso zeigen sich signifikante Unterschiede für regionale Klimaänderungen zwischen zwei Teilensembles des CMIP3, die auf Grundlage der entwickelten Bewertungsfunktion eingeteilt werden. Jedoch sind diese Effekte im Allgemeinen nicht mit den Auswirkungen der
anthropogenen Klimaänderungssignale im Multi-Modell Ensemble vergleichbar, die für die meisten Klimagrößen in einem robusten multivariaten Ansatz detektiert und
quantifiziert werden können. Entsprechend sind die effektiven Klimaänderungen, die sich bei der Kombination aller Simulationen als grundlegende Aussage des
CMIP3 unter den speziellen Randbedingungen ergeben nahezu unabhängig davon, ob alle Läufe mit dem gleichen Einfluss berücksichtigt werden, oder ob die erstellte nummerische Gewichtung verwendet wird. Als eine wesentliche Begründung hierfür kann die Spannbreite der Entwicklung des ENSO-Systems identifiziert werden. Dies
bedeutet größere Schwankungen in den Ergebnissen der Modelle mit funktionierendem ENSO, was den Stellenwert der natürlichen Variabilität als Unsicherheitsquelle
in Fragen des Klimawandels unterstreicht. Sowohl bei Betrachtung der Teilensembles als auch der Gewichtung wirken sich dadurch gegenläufige Trends im SOI
ausgleichend auf die Entwicklung anderer Klimagrößen aus, was insbesondere bei letzterem Vorgehen signifikante mittlere Effekte des Ansatzes, verglichen mit der
Verwendung des üblichen arithmetischen Multi-Modell Mittelwert, verhindert.
The glaciers in Norway exert a strong influence on Norwegian economy and society. Unlike many glaciers elsewhere and despite ongoing climate change and warming, many of them showed renewed advances and positive net mass changes in the 1980's and 1990's, followed by rapid retreats and mass losses since 2000. This difference in behaviour may be attributed to differences and shifts in the glaciological regime - the differences in the magnitude of impacts of climatic and non-climatic geographical factors on the glacier mass.
This study investigates the influence of various atmospheric variables on mass balance changes of a selection of glaciers in Norway by means of Pearson correlation analyses and cross-validated stepwise multiple regression analyses. The analyses are carried out for three time periods (1949-2008, 1949-1988, 1989-2008) separately in order to take into consideration the possible shift in the glaciological regime in the 1980's. The atmospheric variables are constructed from ERA40 and NCEP/NCAR re-analysis datasets and include regional means of seasonal air temperature and precipitation rates and atmospheric circulation indices. The multiple regression models trained in these time periods are then applied to predictors reconstructed from the CMIP3 climate model dataset to generate an estimate for mass changes from the year 1950 to 2100. The temporal overlap of estimates and observations is used for calibration. Finally, observed atmospheric states in seasons that are characterised by a particularly positive or negative mass balance are categorised into time periods of modelled climate by the application of a Bayesian classification procedure.
The strongest influence on winter mass balance is exerted by different indices of the North Atlantic Oscillation (NAO), Northern Annular Mode (NAM) and precipitation. The correlation coefficients and explained variances determined from the multiple regression analyses reveal an East-West gradient, suggesting a weaker influence of the NAO and NAM on glaciers underlying a more continental regime. The highest correlation coefficients and explained variances were obtained for the 1989-2008 time period, which might be due to a strong and predominantly positive phase of the NAO. Multi-model ensemble means of the estimates show a mass loss for all three eastern glaciers, while the estimates for the more maritime glaciers are ambivalent. In general, the estimates show a greater sensitivity to the training time period than to the greenhouse gas emission scenarios according to which the climates were simulated. The average net mass change by the end of 2100 is negative for all glaciers except for the northern Engabreen. For many glaciers, the Bayesian classification of observed atmospheric states into time periods of modelled climate reveals a decrease in probability of atmospheric states favouring extremes in winter, and an increase in probability of atmospheric states favouring extreme mass loss in summer for the distant future (2071-2100). This pattern of probabilities for the ablation season is most pronounced for glaciers underlying a continental and intermediate regime.
Impacts of climate variability and change on Maize (\(Zea\) \(mays\)) production in tropical Africa
(2022)
Climate change is undeniable and constitutes one of the major threats of the 21st century. It impacts sectors of our society, usually negatively, and is likely to worsen towards the middle and end of the century. The agricultural sector is of particular concern, for it is the primary source of food and is strongly dependent on the weather. Considerable attention has been given to the impact of climate change on African agriculture because of the continent’s high vulnerability, which is mainly due to its low adaptation capac- ity. Several studies have been implemented to evaluate the impact of climate change on this continent. The results are sometimes controversial since the studies are based on different approaches, climate models and crop yield datasets. This study attempts to contribute substantially to this large topic by suggesting specific types of climate pre- dictors. The study focuses on tropical Africa and its maize yield. Maize is considered to be the most important crop in this region. To estimate the effect of climate change on maize yield, the study began by developing a robust cross-validated multiple linear regression model, which related climate predictors and maize yield. This statistical trans- fer function is reputed to be less prone to overfitting and multicollinearity problems. It is capable of selecting robust predictors, which have a physical meaning. Therefore, the study combined: large-scale predictors, which were derived from the principal component analysis of the monthly precipitation and temperature; traditional local-scale predictors, mainly, the mean precipitation, mean temperature, maximum temperature and minimum temperature; and the Water Requirement Satisfaction Index (WRSI), derived from the specific crop (maize) water balance model. The projected maize-yield change is forced by a regional climate model (RCM) REMO under two emission scenarios: high emission scenario (RCP8.5) and mid-range emission scenario (RCP4.5). The different effects of these groups of predictors in projecting the future maize-yield changes were also assessed. Furthermore, the study analysed the impact of climate change on the global WRSI. The results indicate that almost 27 % of the interannual variability of maize production of the entire region is explained by climate variables. The influence of climate predictors on maize-yield production is more pronounced in West Africa, reaching 55 % in some areas. The model projection indicates that the maize yield in the entire region is expected to decrease by the middle of the century under an RCP8.5 emission scenario, and from the middle of the century to the end of the century, the production will slightly recover but will remain negative (around -10 %). However, in some regions of East Africa, a slight increase in maize yield is expected. The maize-yield projection under RCP4.5 remains relatively unchanged compared to the baseline period (1982-2016). The results further indicate that large-scale predictors are the most critical drivers of the global year-to-year maize-yield variability, and ENSO – which is highly correlated with the most important predictor (PC2) – seems to be the physical process underlying this variability. The effects of local predictors are more pronounced in the eastern parts of the region. The impact of the future climate change on WRSI reveals that the availability of maize water is expected to decrease everywhere, except in some parts of eastern Africa.
Massenbewegungen zählen zu den am häufigsten auftretenden Naturgefahren in Deutschland. Dabei wird die von instabilen Hängen ausgehende Gefährdung speziell in den Regionen der Mittelgebirge regelmäßig unterschätzt. In Bezug auf die Verbreitung von Massenbewegungen in Mittelgebirgen stellt das süddeutsche Schichtstufenland einen besonderen Schwerpunkt dar.
Die Disposition der Schichtstufenhänge beruht dabei in erster Linie auf einer Wechsellagerung wasserdurchlässiger und wasserstauender geologischer Schichten. Zu Hanginstabilitäten kommt es bevorzugt in Verbindung mit synthetischem Schichtfallen, steilen Hängen und erhöhten Niederschlägen. Rezente Massenbewegungen treten verstärkt in alten Rutsch- und/oder Hangschuttgebieten auf, da sich dort unkonsolidierte Rutschmassen leicht remobilisieren lassen.
Das Ziel der vorliegenden Arbeit ist es, ein fundiertes Verständnis über Ursachen, Ablauf, Ausprägung und Prozesse von charakteristischen Massenbewegungen sowie dem aktuellen Aufbau der damit verbundenen Schichtstufenhänge in Nordbayern zu erlangen, um daraus grundlegende Einschätzungen zur Stabilität der Rutschgebiete treffen zu können. Neben den rutschungsrelevanten geologischen Schichten sind in diesem Zusammenhang insbesondere der Aufbau, die Eigenschaften und Charakteristika der Rutschmassen von besonderer Wichtigkeit, da besonders die bodenmechanischen und bodenphysikalischen Eigenschaften einen entscheidenden Faktor in Bezug auf die Hangstabilität darstellen. Entsprechend steht die umfassende Analyse dieser Sedimente im Fokus der Studien.
Die Arbeiten betrachten dabei drei Hänge im fränkischen Schichtstufenland, an denen in der jüngeren Vergangenheit Massenbewegungen auftraten. Ein weiteres zentrales Auswahlkriterium war die Lage der Gebiete in den Schichtstufen der Fränkischen Alb und der westlich vorgelagerten Keuperstufe, wobei hinsichtlich Typ und Verbreitung möglichst charakteristische Massenbewegungen für die jeweilige Region ausgewählt wurden. Bei Ebermannstadt stand demnach die sog. Werkkalkstufe der Weißjura-Kalke im Fokus, nahe Wüstendorf die Sandsteine des Braunjura und bei Gailnau an der Frankenhöhe die Sandsteine des mittleren (Gips-) Keupers.
Die Untersuchungen der Rutschungen und ihrer Sedimentcharakteristika erfolgte anhand eines speziell konzipierten Multimethodenansatzes mit zahlreichen, multiskaligen Gelände- und Laboranalysen. Neben klassischen, geomorphologischen Kartierungen an der Oberfläche wurden die sedimentologisch-morphologischen Verhältnisse des oberflächennahen Untergrundes in der Vertikalen durch geophysikalische Sondierungen analysiert. Eine Einschätzung der hydrologischen Verhältnisse der Rutschmassen erfolgte auf Basis von Messdaten aus Bodenfeuchtemonitoringsystemen, die an allen Untersuchungsstandorten installiert wurden. Für die bodenphysikalischen und -mechanischen Eigenschaften der Sedimente wurden Korngrößen, Konsistenzgrenzen, Plastizität, Gefüge und Lagerungsdichte untersucht und durch Tonmineralanalysen ergänzt. Die mikromorphologische Analyse von Dünnschliffen aus Rutschungssedimenten und den darin enthaltenen Deformationsstrukturen erweiterten den Gesamtansatz, ermöglichten neuartige Einblicke in die innere Architektur von Rutschmassen und erlaubten die Rekonstruktion von Bewegungsabläufen.
Durch die Arbeiten konnten an den Standorten Ebermannstadt und Gailnau komplexe, vielschichtige Massenbewegungen nachgewiesen werden. In der Rutschung bei Wüstendorf wurden nahezu ausschließlich unkonsolidierte Sedimente feinerer Korngrößen in einem Fließprozess verlagert. Primär erfolgte bei allen Rutschungen nachweislich die Remobilisierung alter Hangsedimente, wobei darüber hinaus auch stets bisher stabile Areale mit in die Bewegung einbezogen wurden.
Der sedimentologische Aufbau der Rutschmassen ist speziell im Falle großer und komplexer Rutschungen mitunter extrem heterogen. Im Zuge der Arbeiten konnten interne Makrostrukturen der Sedimentablagerungen, wie beispielsweise Rotationsflächen oder die Lage von Schollen detektiert werden. Trotz geophysikalisch und visuell auffälliger Beimischungen von Grobschutt, entfallen die größten Mengenanteile aber stets auf die veränderlich feste Feinmaterialfraktion. Im Rahmen der mikromorphologischen Untersuchungen der Sedimentdünnschliffe konnten auch in diesen Sedimenten zahlreiche Deformationsstrukturen nachgewiesen werden.
Die Arbeit unterstreicht insgesamt die Bedeutung dieser bindigen Bestandteile für die (Re)Mobilisierung von Sedimentablagerungen. Die Stabilität des Feinmaterials steht dabei in engem Zusammenhang mit der hydraulischen Leitfähigkeit und dem Eintrag von Wasser, welches zu wechselnden Steifigkeiten der Sedimente führt. Im Falle erhöhter Bodenwassergehalte konnte eine Plastifizierung der Feinkornfraktion ermittelt werden. Kommt es zu einer starken Durchnässung des Untergrundes, führt dies zu einer Plastifizierung der tonigen Lagen und einer entsprechenden Reduktion der Scherfestigkeit, was letztlich zum Auslösen von Massenbewegungen führt. Neben den geologisch-sedimentologischen Voraussetzungen impliziert dies auch eine hohe Bedeutung der Niederschlagscharakteristika in Bezug auf das Auslösen rezenter Massenbewegungen.
Die Bodenwassergehalte unterliegen im Jahresverlauf einer deutlichen saisonalen Variabilität. Während der Sommermonate wurden einheitlich niedrige Feuchtigkeitswerte im oberflächennahen Untergrund verzeichnet, was in erster Linie auf den Einfluss der Vegetation zurückzuführen ist. Auch sommerliche Starkregenereignisse besitzen unter diesen Bedingungen lediglich eine reduzierte Wirkung auf die Durchfeuchtung des Bodens. Demgegenüber erfolgt während der kalten Jahreszeit ein signifikanter Anstieg der Bodenwassergehalte. Neben den Regenfällen kommt vor allem der Schneeschmelze eine essentielle Bedeutung zu, da sie für eine zusätzliche und anhaltende Durchfeuchtung der Schichten besonders im Spätwinter bzw. Frühjahr sorgt. Entsprechend besteht vor allem während der Monate Februar bis April eine erhöhte Disposition für Rutschungen in Nordbayern. Im Hinblick auf die Niederschlagssummen gingen den Rutschungen in den Untersuchungsgebieten zwar keine besonders extremen Ereignisse, aber durchaus deutlich überdurchschnittliche Niederschlagssummen voraus, weshalb unter Berücksichtigung der im Zuge des Klimawandels ansteigenden Winterniederschläge von einer generell verstärkten Rutschungsaktivität auszugehen ist.
Vergleiche mit den Daten aus zahlreichen Übersichtskartierungen von Rutschungen aus den fränkischen Schichtstufengebieten verdeutlichen, dass die ermittelten Ergebnisse auf eine Vielzahl der verzeichneten Rutschungen übertragbar sind.
Der anthropogene Klimawandel ist eine der größten Herausforderungen des 21. Jahrhunderts. Eine Hauptschwierigkeit liegt dabei in der Unsicherheit bezüglich der regionalen Änderung von Niederschlag und Temperatur. Hierdurch wird die Entwicklung geeigneter Anpassungsstrategien deutlich erschwert.
In der vorliegenden Arbeit werden vier Evaluationsansätze mit insgesamt 13 Metriken für aktuelle globale (zwei Generationen) und regionale Klimamodelle entwickelt und verglichen, um anschließend eine Analyse der Projektionsunsicherheit vorzunehmen. Basierend auf den erstellten Modellbewertungen werden durch Gewichtung Aussagen über den Unsicherheitsbereich des zukünftigen Klimas getroffen. Die Evaluation der Modelle wird im Mittelmeerraum sowie in acht Unterregionen durchgeführt. Dabei wird der saisonale Trend von Temperatur und Niederschlag im Evaluationszeitraum 1960–2009 ausgewertet. Zusätzlich wird für bestimmte Metriken jeweils das klimatologische Mittel oder die harmonischen Zeitreiheneigenschaften evaluiert. Abschließend werden zum Test der Übertragbarkeit der Ergebnisse neben den Hauptuntersuchungsgebieten sechs global verteilte Regionen untersucht. Außerdem wird die zeitliche Konsistenz durch Analyse eines zweiten, leicht versetzten Evaluationszeitraums behandelt, sowie die Abhängigkeit der Modellbewertungen von verschiedenen Referenzdaten mit Hilfe von insgesamt drei Referenzdatensätzen untersucht.
Die Ergebnisse legen nahe, dass nahezu alle Metriken zur Modellevaluierung geeignet sind. Die Auswertung unterschiedlicher Variablen und Regionen erzeugt Modellbewertungen, die sich in den Kontext aktueller Forschungsergebnisse einfügen. So wurde die Leistung der globalen Klimamodelle der neusten Generation (2013) im Vergleich zur Vorgängergeneration (2007) im Schnitt ähnlich hoch bzw. in vielen Situationen auch stärker eingeordnet. Ein durchweg bestes Modell konnte nicht festgestellt werden. Der Großteil der entwickelten Metriken zeigt für ähnliche Situationen übereinstimmende Modellbewertungen. Bei der Gewichtung hat sich der Niederschlag als besonders geeignet herausgestellt. Grund hierfür sind die im Schnitt deutlichen Unterschiede der Modellleistungen in Zusammenhang mit einer geringeren Simulationsgüte. Umgekehrt zeigen die Metriken für die Modelle der Temperatur allgemein überwiegend hohe Evaluationsergebnisse, wodurch nur wenig Informationsgewinn durch Gewichtung erreicht werden kann. Während die Metriken gut für unterschiedliche Regionen und Skalenniveaus verwendet werden Evaluationszeiträume nicht grundsätzlich gegeben. Zusätzlich zeigen die Modellranglisten unterschiedlicher Regionen und Jahreszeiten häufig nur geringe Korrelationen. Dies gilt besonders für den Niederschlag. Bei der Temperatur sind hingegen leichte Übereinstimmungen auszumachen. Beim Vergleich der mittleren Ranglisten über alle Modellbewertungen und Situationen der Hauptregionen des Mittelmeerraums mit den Globalregionen besteht eine signifikante Korrelation von 0,39 für Temperatur, während sie für Niederschlag um null liegt. Dieses Ergebnis ist für alle drei verwendeten Referenzdatensätze im Mittelmeerraum gültig. So schwankt die Korrelation der Modellbewertungen des Niederschlags für unterschiedliche Referenzdatensätze immer um Null und die der Temperaturranglisten zwischen 0,36 und 0,44. Generell werden die Metriken als geeignete Evaluationswerkzeuge für Klimamodelle eingestuft. Daher können sie einen Beitrag zur Änderung des Unsicherheitsbereichs und damit zur Stärkung des Vertrauens in Klimaprojektionen leisten.
Die Abhängigkeit der Modellbewertungen von Region und Untersuchungszeitraum muss dabei jedoch berücksichtigt werden. So besitzt die Analyse der Konsistenz von Modellbewertungen sowie der Stärken und Schwächen der Klimamodelle großes Potential für folgende Studien, um das Vertrauen in Modellprojektionen weiter zu steigern.
Environmental interlinked problems such as human-induced land cover change, water scarcity, loss in soil fertility, and anthropogenic climate change are expected to affect the viability of agriculture and increase food insecurity in many developing countries. Climate change is certainly the most serious of these challenges for the twenty-first century. The poorest regions of the world – tropical West Africa included – are the most vulnerable due to their high dependence on climate and weather sensitive activities such as agriculture, and the widespread poverty that limits the institutional and economic capacities to adapt to the new stresses brought about by climate change. Climate change is already acting negatively on the poor smallholders of tropical West Africa whose livelihoods dependent mainly on rain-fed agriculture that remains the cornerstone of the economy in the region. Adaptation of the agricultural systems to climate change effects is, therefore, crucial to secure the livelihoods of these rural communities. Since information is a key for decision-making, it is important to provide well-founded information on the magnitude of the impacts in order to design appropriate and sustainable adaptation strategies.
Considering the case of agricultural production in the Republic of Benin, this study aims at using large-scale climatic predictors to assess the potential impacts of past and future climate change on agricultural productivity at a country scale in West Africa. Climate signals from large-scale circulation were used because state-of-the art regional climate models (RCM) still do not perfectly resolve synoptic and mesoscale convective processes. It was hypothesised that in rain-fed systems with low investments in agricultural inputs, yield variations are widely governed by climatic factors. Starting with pineapple, a perennial fruit crops, the study further considered some annual crops such as cotton in the group of fibre crops, maize, sorghum and rice in the group of cereals, cowpeas and groundnuts belonging to the legume crops, and cassava and yams which are root and tuber crops. Thus the selected crops represented the three known groups of photosynthetic pathways (i.e. CAM, C3, and C4 plants).
In the study, use was made of the historical agricultural yield statistics for the Republic of Benin, observed precipitation and mean near-surface air temperature data from the Climatic Research Unit (CRU TS 3.1) and the corresponding variables simulated by the regional climate model (RCM) REMO. REMO RCM was driven at its boundaries by the global climate model ECHAM 5. Simulations with different greenhouse gas concentrations (SRES-A1B and B1 emission scenarios) and transient land cover change scenarios for present-day and future conditions were considered. The CRU data were submitted to empirical orthogonal functions analysis over the north hemispheric part of Africa to obtain large-scale observed climate predictors and associated consistent variability modes. REMO RCM data for the same region were projected on the derived climate patterns to get simulated climate predictors. By means of cross-validated Model Output Statistics (MOS) approach combined with Bayesian model averaging (BMA) techniques, the observed climate predictors and the crop predictand were further on used to derive robust statistical relationships. The robust statistical crop models perform well with high goodness-of-fit coefficients (e.g. for all combined crop models: 0.49 ≤ R2 ≤ 0.99; 0.28 ≤ Brier-Skill-Score ≤ 0.90).
Provided that REMO RCM captures the main features of the real African climate system and thus is able to reproduce its inter-annual variability, the time-independent statistical transfer functions were then used to translate future climate change signal from the simulated climate predictors into attainable crop yields/crop yield changes. The results confirm that precipitation and air temperature governed agricultural production in Benin in general, and particularly, pineapple yield variations are mainly influenced by temperature. Furthermore, the projected yield changes under future anthropogenic climate change during the first-half of the 21st century amount up to -12.5% for both maize and groundnuts, and -11%, -29%, -33% for pineapple, cassava, and cowpeas respectively. Meanwhile yield gain of up to +10% for sorghum and yams, +24% for cotton, and +39% for rice are expected. Over the time period 2001 – 2050, on average the future yield changes range between -3% and -13% under REMO SRES–B1 (GHG)+LCC, -2% and -11% under REMO SRES–A1B (GHG only),and -3% and -14% under REMO SRES–A1B (GHG)+LCC for pineapple, maize, sorghum, groundnuts, cowpeas and cassava. In the meantime for yams, cotton and rice, the average yield gains lie in interval of about +2% to +7% under REMO SRES–B1 (GHG)+LCC, +0.1% and +12% under REMO SRES–A1B (GHG only), and +3% and +10% under REMO SRES–A1B (GHG)+LCC. For sorghum, although the long-term average future yield depicts a reduction there are tendencies towards increasing yields in the future. The results also reveal that the increases in mean air temperature more than the changes in precipitation patterns are responsible for the projected yield changes. As well the results suggest that the reductions in pineapple yields cannot be attributed to the land cover/land use changes across sub-Saharan Africa. The production of groundnuts and in particular yams and cotton will profit from the on-going land use/land cover changes while the other crops will face detrimental effects.
Henceforth, policymakers should take effective measures to limit the on-going land degradation processes and all other anthropogenic actions responsible for temperature increase. Biotechnological improvement of the cultivated crop varieties towards development of set of seed varieties adapted to hotter and dry conditions should be included in the breeding pipeline programs. Amongst other solutions, application of appropriate climate-smart agricultural practices and conservation agriculture are also required to offset the negative impacts of climate change in agriculture.
Das Tibetplateau (TP) ist das höchste Gebirgsplateau der Erde und bildete sich im Verlauf der letzten 50 Millionen Jahre. Durch seine Ausmaße veränderte das TP nicht nur das Klima im heutigen Asien, sondern bewirkte Veränderungen weltweit. Heute stellt das TP einen Hotspot des Klimawandels dar und ist als Quellgebiet vieler großer Flüsse in Asien für die Wasserversorgung von Milliarden von Menschen von zentraler Bedeutung. Vor diesem Hintergrund ist es wichtig, die Prozesse, die das Klima in der Region steuern, besser zu verstehen und die Variabilität des Klimas auf unterschiedlichen Zeitskalen abschätzen zu können.
Grundlegendes Ziel der vorliegenden Arbeit ist es, räumlich hochaufgelöste quantitative Informationen über die Veränderung der klimatischen Verhältnisse in Asien während der Bildungsphase des TP und unter warm- und kaltzeitlichen Randbedingungen zur Verfügung zu stellen und dadurch eine Verbindung zwischen den verschiedenen Zeitskalen herzustellen. Hierfür werden das heutige Klima und das Paläoklima der Region mit Hilfe von Klimamodellen simuliert. Da frühere Studien zeigen konnten, dass die Ergebnisse von hochaufgelösten Modellen besser mit Paläoklimarekonstruktionen übereinstimmen, als die von vergleichsweise niedrig aufgelösten Globalmodellen, erfolgt ein dynamisches Downscaling des globalen Klimamodells ECHAM5 mit dem regionalen Klimamodell REMO.
Die Heraushebung des TP wird durch eine Serie von fünf Simulationen (Topogra- phieexperimente) approximiert, in denen die Höhe des TP in 25%-Schritten von 0% bis 100% der heutigen Höhe verändert wird. Die Schwankungen des Klimas im spä- ten Quartär sind durch Simulationen für das mittlere Holozän und den Hochstand der letzten Vereisung, das Last-Glacial-Maximum, repräsentiert (Quartärexperi- mente). In den Quartärexperimenten wurden die Treibhausgaskonzentrationen, Orbitalparameter, Landbedeckung und verschiedene Vegetationsparameter an die Bedingungen der jeweiligen Zeitscheibe angepasst. Die Auswertung der Simulati- onsergebnisse konzentriert sich auf jährliche und jahreszeitliche Veränderungen der bodennahen Temperatur und des Niederschlags. Außerdem werden die sich erge- benden Änderungen in der Intensität des indischen Monsuns anhand verschiedener Monsunindizes analysiert. Für das TP und die sich unmittelbar anschließenden Ge- biete wird zusätzlich eine Clusteranalyse durchgeführt, um die dort vorkommenden regionalen Klimatypen identifizieren und charakterisieren zu können.
In den Topographieexperimenten zeigt sich, dass die 2m-Temperatur im Bereich des TP im Jahresmittel mit abnehmender Höhe des Plateaus um bis zu 30◦C zunimmt, während es in den übrigen Teilen des Modellgebiets nahezu überall kälter wird. Die Jahressumme des Niederschlags nimmt mit abnehmender Höhe des TP westlich und nördlich davon zu. Im Bereich des TP sowie südlich und östlich davon gehen die Niederschläge zurück. Die starke Niederschlagszunahme nördlich des TP kann durch die Ausbildung eines Höhentrogs statt eines Höhenrückens in diesem Bereich erklärt werden. Das grundsätzliche räumliche Muster der Veränderungen besteht dabei bereits bei einer Plateauhöhe von 75% des Ausgangswertes und ändert sich bei weiterer Verringerung der Höhe nicht wesentlich. Lediglich der Betrag der Veränderungen nimmt zu. Dies gilt für die 2m-Temperatur und den Niederschlag und sowohl im Jahresmittel als auch für die einzelnen Jahreszeiten. Bezüglich der Intensität des indischen Sommermonsuns zeigt sich, dass zwischen 25% und 75% der heutigen Höhe des TP die stärkste Intensivierung stattfindet. Eine mit heute vergleichbare Monsunintensität tritt erst auf, wenn das TP die Hälfte seiner jetzigen Höhe erreicht hat.
Im mittleren Holozän ist es im Jahresmittel in den meisten Teilen des Modellge- biets kälter und feuchter als heute. Die Unterschiede sind jedoch größtenteils gering und nicht signifikant. Hinsichtlich der Temperatur zeigen die Modelldaten nur vereinzelt eine gute Übereinstimmung mit den rekonstruierten Werten. Allerdings weisen die Rekonstruktionen eine hohe räumliche Variabilität auf, wodurch die in diesem Datensatz vorhandenen Unsicherheiten widergespiegelt werden. Hinsicht- lich des Niederschlags ist die Übereinstimmung besser. Hier deuten sowohl die simulierten als auch die rekonstruierten Daten auf feuchtere Bedingungen hin.
In der Simulation für das Last-Glacial-Maximum liegen die Temperaturen überall im Modellgebiet im Jahresmittel und in allen Jahreszeiten um bis zu 8◦C unter den heutigen Werten. Es besteht eine gute Übereinstimmung mit den rekonstruierten Temperaturwerten für diese Zeitscheibe. Zu einer signifikanten Abnahme der jährlichen Niederschlagsmenge kommt es westlich und nordwestlich des TP, in Indien, Südostasien und entlang der Ostküste Chinas. Für die Bereiche, für die Niederschlagsrekonstruktionen verfügbar sind, stimmen die Modellergebnisse gut mit diesen überein. Zu einer signifikanten Niederschlagszunahme kommt es nur zwischen der Nordküste des Golfs von Bengalen und dem Himalaya, wobei dies möglicherweise ein Modellartefakt darstellt.
Hinsichtlich der Monsunintensität bestehen große Unterschiede zwischen den Indizes. Während der Extended Indian Monsoon Rainfall Index eine starke Ab- schwächung des indischen Sommermonsuns anzeigt, ist der Wert des Webster and Yang Monsoon Index verglichen mit heute nahezu unverändert. Ein Vergleich der Monsunintensität in den Topographie- und den Quartärexperimenten macht deut- lich, dass der indische Monsun durch den Wechsel von warm- und kaltzeitlichen Randbedingungen mindestens so stark beeinflusst wird wie durch die Hebung des TP.
Considering its social, economic and natural conditions the Mediterranean Area is a highly vulnerable region by designated affections of climate change. Furthermore, its climatic characteristics are subordinated to high natural variability and are steered by various elements, leading to strong seasonal alterations. Additionally, General Circulation Models project compelling trends in specific climate variables within this region. These circumstances recommend this region for the scientific analyses conducted within this study. Based on the data of the CMIP3 database, the fundamental aim of this study is a detailed investigation of the total variability and the accompanied uncertainty, which superpose these trends, in the projections of temperature, precipitation and sea-level pressure by GCMs and their specific realizations. Special focus in the whole study is dedicated to the German model ECHAM5/MPI-OM. Following this ambition detailed trends and mean values are calculated and displayed for meaningful time periods and compared to reanalysis data of ERA40 and NCEP. To provide quantitative comparison the mentioned data are interpolated to a common 3x3° grid.
The total amount of variability is separated in its contributors by the application of an Analysis of Variance (ANOVA). For individual GCMs and their ensemble-members this is done with the application of a 1-way ANOVA, separating a treatment common to all ensemble-members and variability perturbating the signal given by different initial conditions. With the 2-way ANOVA the projections of numerous models and their realizations are analysed and the total amount of variability is separated into a common treatment effect, a linear bias between the models, an interaction coefficient and the residuals.
By doing this, the study is fulfilled in a very detailed approach, by considering yearly and seasonal variations in various reasonable time periods of 1961-2000 to match up with the reanalysis data, from 1961-2050 to provide a transient time period, 2001-2098 with exclusive regard on future simulations and 1901-2098 to comprise a time period of maximum length. The statistical analyses are conducted for regional-averages on the one hand and with respect to individual grid-cells on the other hand. For each of these applications the SRES scenarios of A1B, A2 and B1 are utilized. Furthermore, the spatial approach of the ANOVA is substituted by a temporal approach detecting the temporal development of individual variables. Additionally, an attempt is made to enlarge the signal by applying selected statistical methods.
In the detailed investigation it becomes evident, that the different parameters (i.e. length of temporal period, geographic location, climate variable, season, scenarios, models, etc…) have compelling impact on the results, either in enforcing or weakening them by different combinations. This holds on the one hand for the means and trends but also on the other hand for the contributions of the variabilities affecting the uncertainty and the signal. While temperature is a climate variable showing strong signals across these parameters, for precipitation mainly the noise comes to the fore, while for sea-level pressure a more differentiated result manifests. In turn, this recommends the distinguished consideration of the individual parameters in climate impact studies and processes in model generation, as the affecting parameters also provide information about the linkage within the system.
Finally, an investigation of extreme precipitation is conducted, implementing the variables of the total amount of heavy precipitation, the frequency of heavy-precipitation events, the percentage of this heavy precipitation to overall precipitation and the mean daily intensity from events of heavy precipitation. Each time heavy precipitation is defined to exceed the 95th percentile of overall precipitation. Consecutively mean values of these variables are displayed for ECHAM5/MPI-OM and the multi-model mean and climate sensitivities, by means of their difference between their average of the past period of 1981-2000 and the average of one of the future periods of 2046-2065 or 2081-2100. Following this investigation again an ANOVA is conducted providing a quantitative measurement of the severity of change of trends in heavy precipitation across several GCMs.
Besides it is a difficult task to account for extreme precipitation by GCMs, it is noteworthy that the investigated models differ highly in their projections, resulting partially in a more smoothed and meaningful multi-model mean. Seasonal alterations of the strength of this behaviour are quantitatively supported by the ANOVA.