Refine
Has Fulltext
- yes (24)
Is part of the Bibliography
- yes (24)
Document Type
- Doctoral Thesis (24)
Keywords
- Flüssigkristall (4)
- Chemistry (2)
- Chromophor (2)
- Columnare Phase (2)
- Diamant (2)
- Dyade (2)
- Flüssigkristalle (2)
- Fotokatalyse (2)
- Fullerene (2)
- Knochenzement (2)
Institute
Sonstige beteiligte Institutionen
In modern medicine hip and knee joint replacement are common surgical procedures. However, about 11 % of hip implants and about 7 % of knee implants need re-operations. The comparison of implant registers revealed two major indications for re-operations: aseptic loosening and implant infections, that both severely impact the patients’ health and are an economic burden for the health care system. To address these problems, a calcium hydroxide coating on titanium was investigated in this thesis. Calcium hydroxide is a well-known antibacterial agent and used with success in dentistry. The coatings were applied with electrochemically assisted deposition, a versatile tool that combines easiness of process with the ability to coat complex geometries homogeneously. The pH-gradient during coating was investigated and showed the surface confinement of the coating process. Surface pre-treatment altered the surface morphology and chemistry of the titanium substrates and was shown to affect the morphology of the calcium hydroxide coatings. The influence of the coating parameters stirring speed and current pulsing were examined in various configurations and combinations and could also affect the surface morphology. A change in surface morphology results in a changed adhesion and behavior of cells and bacteria. Thus, the parameters surface pre-treatment, stirring speed and current pulsing presented a toolset for tailoring cellular response and antibacterial properties. Microbiological tests with S. aureus and S. epidermidis were performed to test the time-dependent antibacterial activity of the calcium hydroxide coatings. A reduction of both strains could be achieved for 13 h, which makes calcium hydroxide a promising antibacterial coating. To give insight into biofilm growth, a protocol for biofilm staining was investigated on titanium disks with S. aureus and S. epidermidis. Biofilm growth could be detected after 5 days of bacterial incubation, which was much earlier than the 3 weeks that are currently assumed in medical treatment. Thus, it should be considered to treat infections as if a biofilm were present from day 5 on. The ephemeral antibacterial properties of calcium hydroxide were further enhanced and prolonged with the addition of silver and copper ions. Both ionic modifications significantly enhanced the bactericidal potential. The copper modification showed higher antibacterial effects than the silver modification and had a higher cytocompatibility which was comparable to the pure calcium hydroxide coating. Thus, copper ions are an auspicious option to enhance the antibacterial properties. Calcium hydroxide coatings presented in this thesis have promising antibacterial properties and can easily be applied to complex geometries, thus they are a step in fighting aseptic loosening and implant infections.
Synthese und Charakterisierung neuartiger Silicium-, Germanium- und zinnorganischer Riechstoffe
(2014)
Aufbauend auf dem Konzept der C/Si-Bioisosterie beschreibt die vorliegende Arbeit die Synthese und Charakterisierung siliciumhaltiger Derivate der Riechstoffe Galaxolide, Lilial, Bourgeonal, 5,7,7-Trimethyl-4-methylenoctanal und α-Galbanone sowie Beiträge zur Synthese eines silicium¬haltigen Derivats von δ-Damascone. Basierend auf der C/Ge- und C/Sn-Bioisosterie wurden zudem die Germa- und Stanna-Analoga von Lilial und Bourgeonal synthetisiert. Die entsprechenden Zielverbindungen sowie alle isolierten Zwischenstufen wurden durch NMR-Spektroskopie (1H, 11B, 13C, 15N, 29Si, 119Sn) und Elementaranalyse (C, H, N) charakterisiert. In einigen Fällen erfolgte zusätzlich eine Charakterisierung durch Einkristall-Röntgenstrukturanalyse oder Infrarot-Spektroskopie.
Das Ziel dieser Arbeit war die Herstellung von Diamantmaterialien, deren Oberflächen mit Alkinen, Aziden oder Aldehyden modifiziert waren. Diese funktionellen Gruppen sollten die einfache Anbindung verschiedener katalytisch aktiver Systeme mit Hilfe der 1,3-dipolaren Cycloaddition nach Huisgen bzw. Iminbildung ermgöglich.
Da in einer vorangegangenen Arbeit Hinweise darauf gefunden wurde, dass die hochgradig funktionalisierte Oberfläche von Detonationsnanodiamant dazu in der Lage ist, die Aktivität von immobilisierten Katalysatoren zu behindern. Darum wurde in dieser Arbeit verglichen, ob die Verwendung von starren Linkern auf Tolanbasis einen Vorteil gegenüber ihren flexiblen Gegenstücken liefert. Dazu wurde für jede der oben genannten Funktionalisierungsarten je ein Diamantmaterial mit flexibler sowie mindestens eines mit unbiegsamer Verbindungseinheit hergestellt und getestet. Dadurch konnte das Konzept der starren Linker für Enzyme bestätigt werden und es wurde eine signifikant höhere Aktivität erhalten, als wenn flexible Anbindungsbrücken verwendet wurden. Bei Organokatalysatoren und metallorganischen Systemen konnten jedoch keine erfolgreichen Katalysen durchgeführt werden.
In this work the successful synthesis, the linear and nonlinear spectroscopic properties as well as the electrochemical behaviour of some linear and star-shaped squaraine superchromophores that are based on indolenine derivatives were presented. The attempt to synthesise similar chromophores which contained only benzothiazole squaraines failed unfortunately. However, one trimer that contained mixed benzothiazole indolenine squaraines could be synthesised and investigated as well.
The linear spectroscopic properties, like red-shift and broadening of the absorption, of all superchromophores could be explained by exciton coupling theory. The heterochromophores (SQA)2(SQB)-N, (SQA)(SQB)2-N and (SQA)(SQB)-NH displayed additional to the typical squaraine fluorescence from the lowest excited state some properties that could be assigned to localised states. While the chromophores with N-core showed very small emission quantum yields, the chromophores with the other cores and the linear oligomers display an enhancement compared to the monomers.
Transient absorption spectroscopy experiments of the star-shaped superchromophores showed, that their formally degenerated S1 states are split due to a deviation of the ideal C3 symmetry. This is also the reason for the observation of an absorption band for the highest exciton state, which is derived from the S1-state of the monomers, as its transition-dipole moment would be zero in the symmetrical case.
The linear oligomers and the star-shaped superchromophores with a benzene or triarylamine core showed at least additive, sometimes even weak cooperative, behaviour in the two-photon absorption experiments. Additional to higher two-photon absorption cross sections the chromophores showed a pronounced broadening of the nonlinear absorption, due to symmetry breaking and a higher density of states.
Unfortunately it was not possible to solve the problem of the equilibrium of the cisoid and the transoid structure of donor substituted azulene squaraines, due to either instability of the squaraines or steric hindrance.
Project Borylene
A new borylene ligand ({BN(SiMe\(_3\))(t-Bu)}) has been successfully synthesized bound in a terminal manner to base metal scaffolds of the type [M(CO)\(_5\)] (M = Cr, Mo, and W), yielding complexes [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19), [(OC)\(_5\)Mo{BN(SiMe\(_3\))(t- Bu)}] (20), and [(OC)\(_5\)W{BN(SiMe\(_3\))(t-Bu)}] (21) (Figure 5-1). Synthesis of complexes 19, 20, and 21 was accomplished by double salt elimination reactions of Na\(_2\)[M(CO)\(_5\)] (M = Cr (11), Mo (1), and W (12)) with the dihaloborane Br\(_2\)BN(SiMe\(_3\))(t-Bu) (18). This new “first generation” unsymmetrical borylene ligand is closely akin to the bis(trimethylsilyl)aminoborylene ligand and has been shown to display similar structural characteristics and reactivity. The unsymmetrical borylene ligand {BN((SiMe\(_3\))(t-Bu)} does display some individual characteristics of note and has experimentally been shown to undergo photolytic transfer to transition metal scaffolds in a more rapid manner, and appears to be a more reactive borylene ligand, than the previously published symmetrical {BN(SiMe\(_3\))\(_2\)} ligand, based on NMR and IR spectroscopic evidence.
Photolytic transfer reactions with this new borylene ligand ({BN((SiMe\(_3\))(t-Bu)}) were conducted with other metal scaffolds, resulting in either complete borylene transfer or partial transfer to form bridging borylene ligand interactions between the two transition metals. The unsymmetrical ligand’s coordination to early transition metals (up to Group 6) indicates a preference for a terminal coordination motif while bound to these highly Lewis acidic species. The ligand appears to form more energetically stable bridging coordination modes when bound to transition metals with high Lewis basicity (beyond Group 9) and has been witnessed to transfer to transition metal scaffolds in a terminal manner and subsequently rearrange in order to achieve a more energetically stable bridging final state.
Figure 5-2 lists the four different transfer reactions conducted between the chromium borylene species [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19) and the transition metal complexes [(η\(^5\)-C\(_5\)H\(_5\))V(CO)\(_4\)] (51), [(η\(^5\)-C\(_5\)Me\(_5\))Ir(CO)\(_2\)] (56), [(η\(^5\)-C\(_5\)H\(_4\)Me)Co(CO)\(_2\)] (59), and [{(η\(^5\)-C\(_5\)H\(_5\))Ni}\(_2\){μ-(CO)\(_2\)}] (53). These reactions successfully yielded the new “second generation” borylene complexes [(η\(^5\)-C\(_5\)H\(_5\))(OC)\(_3\)V{BN(SiMe\(_3\))(t-Bu)}] (55), [(η\(^5\)-C\(_5\)Me\(_5\))Ir{BN(SiMe\(_3\))(t-Bu)}\(_2\)] (58), [{(η\(^5\)-C\(_5\)H\(_4\)Me)Co}\(_2\)(μ-CO)\(_2\){μ- BN(SiMe\(_3\))(t-Bu)}] (61), and [{(η\(^5\)-C\(_5\)H\(_5\))Ni}\(_2\)(μ-CO){μ-BN(SiMe\(_3\))(t-Bu)}] (62), respectively.
Analysis of the accumulated data for all of the terminal borylene species discussed in this section, particularly bond distances, infrared spectroscopy, and \(^{11}\)B{\(^1\)H} NMR spectroscopic data, has been performed, and a trend in the data has led to the following conclusions:
[1] NMR spectroscopic data for the \(^{11}\)B{\(^1\)H} boron and \(^{13}\)C{\(^1\)H} carbonyl environments of the first generation borylene species ([(OC)\(_5\)M{BN(SiMe\(_3\))(t-Bu)}] (M = Cr (19), Mo (20), and W (21))) all show progressive up-field shifting as the Group 6 metal becomes heavier (Cr (19) to Mo (20) to W (21)), indicating maximum deshielding for these nuclei in the [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19) complex.
[2] The boron-metal-trans-carbon (B-M-C\(_{trans}\)) axes of the first generation borylene complexes [(OC)\(_5\)M{BN(SiMe\(_3\))(t-Bu)}] (M = Mo (20), and W (21)) are not completely linear, preventing direct IR spectroscopic comparison. The chromium analog [(OC)\(_5\)Cr{BN(SiMe\(_3\))(t-Bu)}] (19), however, is essentially linear and displays the expected three carbonyl IR stretching frequencies, all at higher energy than those of the chromium bis(trimethylsilyl)aminoborylene complex [(OC)\(_5\)Cr{BN(SiMe\(_3\))\(_2\)}] (13), indicating that the ({BN(SiMe\(_3\))(t-Bu)}) ligand is either a stronger σ-donor or a poorer π-acceptor compared to the chromium metal center.
[3] In transfer reactions, the {BN(SiMe\(_3\))(t-Bu)} fragment appears to be more stable as a terminal ligand when bound to more Lewis acidic first row transition metals and appears to prefer coordination in a bridging motif when coordinated to more Lewis basic first row transition metals.
Project Borirene
The synthesis of the first platinum bis(borirene) complexes are presented along with findings from structural and electronic examination of the role of platinum in allowing increased coplanarity and conjugation of twin borirene systems. This series of trans-platinum-linked bis(borirene) complexes (119/120, 122/123, and 125/126) all show coplanarity in the twin ring systems and stand as the first verified structural representations of two coplanar borirene systems across a linking unit. The role of a platinum atom in mediating communication between chromophoric ligands can be generalized by an expected bathochromic (red) shift in the absorption spectrum due to an increase in the electronic delocalization between the formerly independent aromatic systems when compared to the platinum mono-σ-borirenyl systems. The trans-platinum bis(borirene) scaffold serves as a simplified monomeric system that allows not only study of the effects of transition metals in mitigating electronic conjugation, but also the tunability of the overall photophysical profile of the system by exocyclic augmentation of the three-membered aromatic ring.
A series of trans-platinum bis(alkynyl) complexes were prepared (Figure 5-3) to serve as stable platforms to transfer terminal borylene ligands {BN(SiMe\(_3\))\(_2\)} onto 95, 102, 106, and 63. Mixing of cis-[PtCl\(_2\)(PEt\(_3\))\(_2\)] (93) with two equivalents of corresponding alkynes in diethylamine solutions successfully yielded trans-[Pt(C≡C-Ph)\(_2\)(PEt\(_3\))\(_2\)] (95), trans-[Pt(C≡C-p-C\(_6\)H\(_4\)OMe)\(_2\)(PEt\(_3\))\(_2\)] (102), trans-[Pt(C≡C-p-C\(_6\)H\(_4\)CF\(_3\))\(_2\)(PEt\(_3\))\(_2\)](106), and trans-[Pt(C≡C-9-C\(_{14}\)H\(_9\))\(_2\)(PEt\(_3\))\(_2\)] (63) through salt elimination reactions.
Three of the trans-platinum bis(alkynyl) complexes (95, 102, and 106) successfully yielded trans-platinum bis(borirenyl) complexes 119/120, 122/123, and 125/126 through photolytic transfer of two equivalents of the terminal borylene ligand {BN(SiMe\(_3\))\(_2\)} from [(OC)\(_5\)Cr{BN(SiMe\(_3\))\(_2\)}] (13) (Figure 5-4). Attempted borylene transfer reactions to the trans-platinum bis(alkynyl) complex trans-[Pt(C≡C-9-C\(_{14}\)H\(_9\))\(_2\)(PEt\(_3\))\(_2\)] (63) failed due to the complex’s photoinstability. Although a host of other variants of platinum alkynyl species were prepared and attempted, these three were the only ones that successfully yielded trans-platinum bis(borirenyl) units. Attempts were also made to create a cis variant for direct UV-vis comparison to the trans-platinum bis(borirenyl) variants, however, these attempts were also not successful. Gladysz-type platinum end-capped alkynyl species were also synthesized to serve as transfer platforms for borirene synthesis in sequential order, however, these species were also shown to not be photolytically stable.
A host of new monoborirenes: Ph-(μ-{BN(SiMe\(_3\))(t-Bu)}C=C)-Ph (148), trans- [PtCl{(μ-{BN(SiMe\(_3\))(t-Bu)}C=C)-Ph}(PEt\(_3\))\(_2\)] (149), and [(η\(^5\)-C\(_5\)Me\(_5\))(OC)\(_2\)Fe(μ- {BN(SiMe\(_3\))(t-Bu)}C=C)Ph] (150) were synthesized by photo- and thermolytic transfer of the unsymmetrical {BN(SiMe\(_3\))(t-Bu)} ligand from the complexes [(OC)\(_5\)M{BN(SiMe\(_3\))(t-Bu)}] (M = Cr (19), Mo (20), and W (21)) to organic and organometallic alkynyl species to verify that the borylene complexes all display similar reactivity to the symmetrical terminal borylenes of the type [(OC)\(_5\)M{BN(SiMe\(_3\))\(_2\)}] (M = Cr (13), Mo (14), and W (15)). These monoborirenes are all found to be oils when in their pure states and X-ray structural determination was impossible for these species.
Project Boratabenzene
The bis(boratabenzene) complex [{(η\(^5\)-C\(_5\)H\(_5\))Co}\(_2\){μ:η\(^6\),η\(^6\)-(BC\(_5\)H\(_5\))\(_2\)}] (189) was successfully prepared by treatment of tetrabromodiborane (65) with six equivalents of cobaltocene (176) in a unique reaction that utilized cobaltocene as both a reagent and reductant (Figure 5-5). The bimetallic transition metal complex features a new bridging bis(boratabenzene) ligand linked through a boron-boron single bond that can manifest delocalization of electron density by providing an accessible LUMO orbital for π-communication between the cobalt centers and heteroaromatic rings.
This dianionic diboron ligand was shown to facilitate electronic coupling between the cobalt metal sites, as evidenced by the potential separations between successive single-electron redox events in the cyclic voltammogram. Four formal redox potentials for complex 189 were found: E\(_{1/2}\)(1) = −0.84 V, E\(_{1/2}\)(2) = −0.94 V, E\(_{1/2}\)(3) = −2.09 V, and E\(_{1/2}\)(4) = −2.36 V (relative to the Fc/Fc+ couple) (Figure 5-6). These potentials correlate to two closely-spaced oxidation waves and two well-resolved reduction waves ([(189)]\(^{0/+1}\), [(189)]\(^{+1/+2}\), [(189)]\(^{0/–1}\), and [(189)]\(^{–1/–2}\) redox couples, respectively). The extent of metal-metal communication was found to be relative to the charge of the metal atoms, with the negative charge being more efficiently delocalized across the bis(boratabenzene) unit (class II Robin-Day system). Magnetic studies indicate that the Co(II) ions are weakly antiferromagnetically coupled across the B-B bridge.
While reduction of the bis(boratabenzene) system resulted in decomposition of the complex, oxidation of the system by one- and two-electron steps resulted in isolable stable monocationic (194) and dicationic (195) forms of the bis(boratabenzene) complex (Figure 5-7). Study of these systems verified the results of the cyclic voltammetry studies performed on the neutral species. These species are unfortunately not stable in acetonitrile or nitromethane solutions, which until this point are the only solvents that have been observed to dissolve the cationic species. Unfortunately, this instability in solution complicates reactivity studies of these cationic complexes.
Finally, reactivity studies were performed on the neutral bis(boratabenzene) complex 189 in which the compound was tested for: (A) cleavage of the boratabenzene (cyclo-BC\(_5\)H\(_5\)) ring from the cobalt center, and (B) oxidative addition of the B-B bond to a transition metal scaffold to attempt synthesis of the first ever L\(_x\)M-η\(^1\)-(BC\(_5\)H\(_5\)) complex. Both of these reactivity studies, however, proved unsuccessful and typically witnessed decomposition of the bis(boratabenzene) complex or no reactivity. After repeated attempts of these reactions, no oxidative addition of the bis(boratabenzene) system could be confirmed.
The photochemistry and photophysics of transition metal complexes are of great interest, since such materials can be exploited for a wide range of applications such as in photocatalysis, sensing and imaging, multiphoton-absorption materials and the fabrication of OLEDs. A full understanding of the excited state behavior of transition metal compounds is therefore important for the design of new materials for the applications mentioned above. In principle, the luminescence properties of this class of compounds can be tuned by changing the metal or subtle changes in the ligand environment.
Furthermore, transition-metal complexes continue to play a major role in modern synthetic chemistry. In particular, they can realize selective transformations that would either be difficult or impossible by conventional organic chemistry. For example, they enable the efficient and selective formation of carbon–carbon bonds. One famous example of these types of transformations are metal-catalyzed cyclization reactions. Herein, metallacyclopentadiene complexes are considered as key intermediates in a number of metal-mediated or -catalyzed cyclization reactions, i.e. the [2+2+2] cyclotrimerization of alkynes. Recent research has focused on the synthesis and characterization of these metallacyclic intermediates such as MC4 ring systems. Metallacyclopentadienes are structurally related to main group EC4 systems such as boroles, siloles, thiophenes and phospholes. Overall, this group of compounds (EC4 analogues) is well known and has attracted significant attention due to their electron-transport and optical properties. Unlike transition metal analogues, however, these EC4 systems show no phosphorescence, which is due to inefficient SOC compared to 2nd and 3rd row transition metals, which promoted us to explore the phosphorescence potential of metallacyclopentadienes.
In 2001, Marder et al. developed a one-pot high-yield synthesis of luminescent 2,5 bis(arylethynyl)rhodacyclopentadienes by reductive coupling of 1,4-diarylbuta-1,3-diynes at a suitable rhodium(I) precursor. Over the past years, a variety of ligands (e.g. TMSA, S,S’ diethyldithiocarbamate, etc.) and 1,4-bis(p-R-phenyl)-1,3-butadiynes or linked , bis(p-R-arylethynyl)alkanes (R = electron withdrawing or donating groups) were investigated and always provided a selective formation of 2,5 bis(arylethynyl)rhodacyclopentadienes, which were reported to be fluorescent despite presence of the heavy atom. To examine the influence of the ligand sphere around the rhodium center on the intersystem-crossing (ISC) processes in the above-mentioned fluorescent rhodacyclopentadienes and to increase the metal character in the frontier orbitals by destabilizing the Rh filled d-orbitals, a -electron donating group was introduced, namely acetylacetonato (acac). Interestingly, in 2010 Tay reacted [Rh(κ2-O,O-acac)(PMe3)2] with ,-bis(p-R-arylbutadiynyl)alkanes and observed not only the fluorescent 2,5 bis(arylethynyl)rhodacyclopentadienes, but also rhodium 2,2’-bph complexes as products, which were reported to be phosphorescent in preliminary photophysical studies.
In this work, the reaction behavior of [Rh(κ2-O,O-acac)(L)2] (L = PMe3, P(p-tolyl)3) with different ,-bis(p-R-arylbutadiynyl)alkanes was established. Furthermore, the separation of the two isomers 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium 2,2’-bph complexes (B), and the photophysical properties of those were explored in order to clarify their fundamentally different excited state behaviors.
Reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with ,-bis(arylbutadiynyl)alkanes gives exclusively weakly fluorescent 2,5-bis(arylethynyl)rhodacyclopentadienes. Changing the phosphine ligands to PMe3, reactions of [Rh(κ2-O,O-acac)(PMe3)2] and , bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties, as mentioned before.
As a result of a normal [2+2] reductive coupling at rhodium, 2,5 bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence. Rhodium 2,2’-bph complexes (B), which show phosphorescence, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent -H-shift. Control of the isomer distribution, of 2,5-bis(arylethynyl)rhodacyclopentadienes (A) and rhodium biphenyl complexes (B), is achieved by modification of the linked , bis(arylbutadiynyl)alkane.
Changing the linker length from four CH2 to three CH2 groups, dramatically favors the formation of the rhodium biphenyl isomer B, providing a fundamentally new route to access photoactive metal biphenyl compounds in good yields. This is very exciting as the photophysical properties of only a limited number of bph complexes of Ir, Pd and Pt had been explored. The lack of photophysical reports in the literature is presumably due to the limited synthetic access to various substituted 2,2’-bph transition metal complexes.
On the other hand, as the reaction of [Rh(κ2-O,O-acac)(P(p-tolyl)3)2] with , bis(arylbutadiynyl)alkanes provides a selective reaction to give weakly fluorescent 2,5 bis(arylethynyl)rhodacyclopentadiene complexes with P(p-tolyl)3 as phosphine ligands, a different synthetic access to 2,5-bis(arylethynyl)rhodacyclopentadiene complexes with PMe3 as phosphine ligands was developed, preventing the time-consuming separation of the isomers. The weak rhodium-phosphorus bonds of 2,5-bis(arylethynyl)rhodacyclopentadiene complexes bearing P(p tolyl)3 as phosphine ligands, relative to those of related PMe3 complexes, allowed for facile ligand exchange reactions. In the presence of an excess of PMe3, a stepwise reaction was observed, giving first the mono-substituted, mixed-phosphine rhodacyclopentadiene intermediates and, subsequently, full conversion to the highly fluorescent 2,5 bis(arylethynyl)-rhodacyclopentadienes bearing only PMe3 ligands (by increasing the reaction temperature).
With spectroscopically pure 2,5-bis(arylethynyl)rhodacyclopentadiene complexes A (bearing PMe3 as phosphine ligands) and rhodium 2,2-bph complexes B in hand, photophysical studies were conducted. The 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are highly fluorescent with high quantum yields up to 54% and very short lifetimes (τ = 0.2 – 2.5 ns) in solution at room temperature. Even at 77 K in glass matrices, no additional phosphorescence is observed which is in line with previous observations made by Steffen et al., who showed that SOC mediated by the heavy metal atom in 2,5-bis(arylethynyl)rhodacyclopentadienes and 2,5 bis(arylethynyl)iridacyclopentadienes is negligible. The origin of this fluorescence lies in the pure intra-ligand (IL) nature of the excited states S1 and T1. The HOMO and the LUMO are nearly pure and * ligand orbitals, respectively, and the HOMO is energetically well separated from the filled rhodium d orbitals. The absence of phosphorescence in transition metal complexes due to mainly IL character of the excited states is not unusual, even for heavier homologues than rhodium with greater SOC, resulting in residual S1 emission (fluorescence) despite ISC S1→Tn being sufficiently fast for population of T1 states. However, there are very few complexes that exhibit fluorescence with the efficiency displayed by our rhodacyclopentadienes, which involves exceptionally slow S1→Tn ISC on the timescale of nanoseconds rather than a few picoseconds or faster.
In stark contrast, the 2,2’-bph rhodium complexes B are exclusively phosphorescent, as expected for 2nd-row transition metal complexes, and show long-lived (hundreds of s) phosphorescence (Ф = 0.01 – 0.33) at room temperature in solution. As no fluorescence is detected even at low temperature, it can be assumed that S1→Tn ISC must be faster than both fluorescence and non-radiative decay from the S1 state. This contrasts with the behavior of the isomeric 2,5-bis(arylethynyl)rhodacyclopentadienes for which unusually slow ISC occurs on a timescale that is competitive with fluorescence (vide supra). The very small values for the radiative rate constants, however, indicate that the nature of the T1 state is purely 3IL with weak SOC mediated by the Rh atom. The phosphorescence efficiency of these complexes in solution at room temperature is even more impressive, as non-radiative coupling of the excited state with the ground state typically inhibits phosphorescence. Instead, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to 646 s and to emit with high quantum yields for biphenyl complexes. The exceptionally long lifetimes and small radiative rate constants of the rhodium biphenyl complexes are presumably a result of the large conjugated -system of the organic ligand. According to TD DFT studies, the T1 state involves charge-transfer from the biphenyl ligand into the arylethynyl moiety away from the rhodium atom. This reduces the SOC of the metal center that would be necessary for fast phosphorescence. These results show that the π-chromophoric ligand can gain control over the photophysical excited state behavior to such an extent that even heavy transition metal atoms like rhodium participate in increasing the fluorescence such as main-group analogues do. Furthermore, in the 2,2’-bph rhodium complexes, the rigidity of the organic -system allows the ligand-based excited triplet state to exist in solution for up to hundreds of s and to emit with exceptional quantum yields.
Therefore, investigations of the influence of the ligand sphere around the rhodium center have been made to modify the photophysical properties and furthermore to explore the reaction behavior of these rhodium complexes. Bearing in mind that the P(p-tolyl)3 ligands can easily be replaced by the stronger -donating PMe3 ligands, ligand exchange reactions with N heterocyclic carbenes (NHCs) as even stronger -donors was investigated. Addition of two equivalents of NHCs at room temperature led to the release of one equivalent of P(p-tolyl3) and formation of the mono-substituted NHC rhodium complex. The reaction of isolated mono-NHC complex with another equivalent of NHC at room temperature did not result in the exchange of the second phosphine ligand. Moderate heating of the reaction to 60 °C, however, resulted in the formation of tetra-substituted NHC rhodium complex [Rh(nPr2Im)4]+[acac]-. To circumvent the loss of the other ligands in the experiments described above, a different approach was investigated to access rhodacyclopentadienes with NHC instead of phosphine ligands.
Reaction of the bis-NHC complex [Rh(κ2-O,O-acac)(nPr2Im)2] with , bis(arylbutadiynyl)alkanes at room temperature resulted 2,5-bis(arylethynyl)-rhodacyclopentadienes with the NHC ligands being cis or trans to each other as indicated by NMR spectroscopic measurements and single-crystal X-ray diffraction analysis. Isolation of clean material and a fundamental photophysical study could not be finished for reasons of time within the scope of this work.
Furthermore, shortening of the well conjugated -system of the chromophoric ligand (changing from tetraynes to diynes) was another strategy to examine the reaction behavior of theses ligands with rhodium(I) complexes and to modify the excited state behavior of the formed rhodacyclopentadienes. The reaction of [Rh(κ2-O,O-acac)(PMe3)2] with 1,7 diaryl 1,6-heptadiynes (diynes) leads to the selective formation of 2,5 bis(aryl)rhodacyclopentadienes. These compounds, however, are very weakly fluorescent with quantum yields ФPL < 1, and very short emission lifetimes in toluene at room temperature. Presumably, vibrational modes of the bis(phenyl)butadiene backbone leads to a higher rate constant for non-radiative decay and is thus responsible for the low quantum yields compared to their corresponding PMe3 complexes with the bis(phenylethynyl)butadiene backbone at room temperature. No additional phosphorescence, even at 77 K in the glass matrix is observed.
Chancing the phosphine ligands to P(p-tolyl)3, reactions of [Rh(κ2-O,O-acac)(P(p-tolyl3)2)] with 1,7-diaryl-1,6-heptadiynes, however, resulted in a metal-mediated or -catalyzed cycloaddition reaction of alkynes and leads to full conversion to dimerization and trimerization products and recovery of the rhodium(I) starting material. This is intuitive, considering that P(Ar)3 (Ar = aryl) ligands are considered weaker -donor ligands and therefore have a higher tendency to dissociate. Therefore, rhodium(I) complexes with aryl phosphines as ligands have an increasing tendency to promote catalytic reactions, while the stronger -donating ligands (PMe3 or NHCs) promote the formation of stable rhodium complexes.
Finally, in Chapter 4, the findings of the work conducted on N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) is presented. These compounds have unique electronic and steric properties and are therefore of great interest as ligands and organo-catalysts. In this work, studies of substitution reactions involving novel carbonyl complexes of rhodium and nickel are reported. For characterization and comparison of CAACmethyl with the large amount of data available for NHC and sterically more demanding CAAC ligands, an overview on physicochemical data (electronics, sterics and bond strength) is provided.
The reaction of [Rh(-Cl)(CO)2]2 with 2 equivalents of CAACmethyl at low temperature afforded the mononuclear complex cis-[(RhCl(CO)2(CAACmethyl)]. However, reacting [Rh( Cl)(CO)2]2 with CAACmethyl at room temperature afforded a mixture of complexes. The mononuclear complex [(RhCl(CO)(CAACmethyl)2], the chloro-bridged complexes [(Rh2( Cl)2(CO)3(CAACmethyl)], [Rh(-Cl)(CO)(CAACmethyl)]2 and a carbon monoxide activation product were formed. The carbon monoxide activation product is presumably formed via the reaction of two equivalents of the CAAC with CO to give the bis-carbene adduct of CO, and subsequent rearrangement via migration of the Dipp moiety. While classical N-heterocyclic carbenes are not electrophilic enough to react with CO, related diamidocarbenes and alkyl(amino)carbenes undergo addition reactions with CO to give the corresponding ketenes. Consequently, to obtain the CAAC-disubstituted mononuclear complex selectively, 8 equivalents of CAACmethyl were reacted with 1 equivalent of [Rh(-Cl)(CO)2]2. For the evaluation of TEP values, [Ni(CO)3(CAAC)] was synthesized in collaboration with the group of Radius. With the complexes [(RhCl(CO)(CAACmethyl)2] and [Ni(CO)3(CAAC)] in hand, it was furthermore possible to examine the electronic and steric parameters of CAACmethyl. Like its bulkier congeners CAACmenthyl and CAACcy, the methyl-substituted CAAC is proposed to be a notably stronger -donor than common NHCs. While it has a very similar TEP value of 2046 cm-1, it additionally possess superior -acceptor properties (P = 67.2 ppm of phosphinidene adduct).
CAACs appear to be very effective in the isolation of a variety of otherwise unstable main group and transition metal diamagnetic and paramagnetic species. This is due to their low-lying LUMO and the small singlet-triplet gap. These electronic properties also allow free CAACs to activate small molecules with strong bonds. They also bind strongly to transition metal centers, which enables their use under harsh conditions. One recent development is the use of CAACs as ligands in transition metal complexes, which previously were only postulated as short-lived catalytic intermediates.[292,345] The availability of these reactive species allows for a better understanding of known catalytic reactions and the design of new catalysts and, moreover, new applications. For example Radius et al.[320] prepared a CAAC complex of cobalt as a precursor for thin-film deposition and Steffen et al.[346] reported a CAAC complex of copper with very high photoluminescent properties, which could be used in LED devices. With the development of cheap and facile synthetic methods for the preparation of CAACs and their corresponding transition metals complexes, as well as the knowledge of their electronic properties, it is safe to predict that applications in and around this field of chemistry will continue to increase.
Die vorliegende Arbeit befasst sich mit der Synthese und Untersuchung V- und brettförmiger Flüssigkristalle zur Realisierung einer biaxialen nematischen Mesophase. Es wurde erfolgreich eine Serie neuer Mesogene mit hockeyschlägerförmiger und V-förmiger Struktur synthetisiert. Zusätzlich wurden Dimere aus einem dieser hockeyschlägerförmigen Verbindungen dargestellt. Als Kernbaustein wurde Benzo[1,2-b:4,3-b']dithiophen verwendet, dessen lokales Kerndipolmoment von 1.0 Debye sich nach theoretischen Vorgaben zusätzlich zum Bindungswinkel (108.9 °) positiv auf die Bildung einer Nb-Phase auswirken soll. Überraschenderweise bilden nur die hockeyschlägerförmigen Moleküle eine uniaxiale, optisch positive nematische Mesophase aus. Alle anderen V-förmigen Verbindungen und sogar die Dimere sind ausschließlich kristallin und keine Flüssigkristalle. Die Einkristallstrukturanalyse eines hockeyschlägerförmigen Mesogens sowie eines V-förmigen Moleküls zeigt bemerkenswerte Ähnlichkeiten auf. Ein Modell des Phasenübergangs wird präsentiert, welches die Abwesenheit der nematischen Mesophase in der Familie der V-förmigen, formstabilen Mesogene mit terminalen aliphatischen Ketten erklärt. Zudem befasst sich die Arbeit mit der Synthese und der Untersuchung brettförmiger Moleküle, welche dem optimalen Seitenverhältnis von 15 : 5 : 3 mit L > B > T zur Bildung biaxialer Mesophasen, relativ nahekommen. Ein Anthrachinon-Kernbaustein wurde dabei mit Armen bestehend aus einem Oligo(phenylenethinylen)-Grundgerüst entsprechender Länge verknüpft. Es konnten verschiedene dachförmige Mesogene dargestellt werden, bei denen die Art und Anzahl der Seitenketten sowie der terminalen Ketten variiert wurde. Thermische sowie mikroskopische Untersuchungen zeigen bei allen Verbindungen eine breite nematische Mesophase. Mittels spezieller Röntgenstreuung im magnetischen Feld kann die Bildung nematischer Domänen mit SmC-artigen biaxialen Aggregaten bestätigt werden.
Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications.
Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 % was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting.
While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes.
Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength.
Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications.
The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes.
In this work the energy transfer and excitonic coupling in different chromophore arrangements were investigated. A difference in the coupling strength was introduced by varring the connecting unit and the spacial orientation relative to each other.
The synthesis of the 2,7-substituted pyrene compounds could be optimised and good yields of HAB 1 and HAB 2 and small amounts of HAB 2 could be achieved by cobalt-catalysed trimerisation or Diels Alder reaction in the end. Absorption and fluorescence spectra reveal strong intramolecular interactions between the pyrene molecules in the HAB 1. Excitation spectra recorded at the high and low energy fluorescence suggest the contribution of two components to the spectra. One being similar to the ground state aggregate and a second species similar to undisturbed pyrene. All these feature can be accounted to two different fluorescent states which are due to electronical decoupling in the excited state. Due to the strong intramolecular coupling already in the ground state of the molecule, no energy transfer could be studied, as the six pyrene units cannot be seen as separate spectroscopic entities between which energy could be transferred.
In the second part of this thesis dye conjugates of different size and alignment were synthesised to study the interaction of the transition-dipole moments. Therefore a systematic investigation of Sonogashira conditions was performed in order to obtain good yields of the desired compounds and keep dehalogenation at a minimum level. Nevertheless only the symmetrical triads could be purified as the asymmeric triads and pentades proved to decompose during purification.
The pyrene containing triads Py2B and Py2SQB show small interactions already in the ground state represented by red shifts of the spectra and a broadening of the bands. Nevertheless, these interactions are in the weak coupling regime and energy transfer between the constituents is possible. On the contrary in the TA spectra it is obvious that always the whole triad, at least to some extend is excited. To question if the excitation of the high energy state is deactivated by energy transfer or rather IC in a superchromophore could not be distinguished in the course of this work. At present additional time-dependent calculations of the dynamics are in progress to get a deeper understanding of the photophysical processes taking place in the triads.
The dye conjugates B2SQB-3 and (SQB)2B-4 can be assigned to the strong interaction range and hence are describable by exciton theory. The transition-dipole moments proved to be more than additive and increase for both compounds from absorption to fluorescence. This can be explained by an enhancement of the coupling in the relaxed excited state compared to the absorption into the Franck-Condon state due to a more steep potential energy surface in the excited state and hence smaller fluctuations.
In the last part of this thesis the influence of disrupting electronical communication by implementing a rigid non-conjugated bridge in a bichromophoric trans-squaraine system was tested. While the flexible linked squaraines show complex spectra due to different conformers the SQA2Anth compound is rigified and no rotation is possible. This change in flexibility is represented in the steady-state spectra where just one main absorption and fluorescence band is present due to a single allowed excitonic state. The system proves to own an excited state that is completely delocalised over the whole molecule.