## 004 Datenverarbeitung; Informatik

### Refine

#### Document Type

- Doctoral Thesis (2)
- Master Thesis (1)

#### Keywords

- Data Mining (3) (remove)

#### Institute

In the course of the growth of the Internet and due to increasing availability of data, over the last two decades, the field of network science has established itself as an own area of research. With quantitative scientists from computer science, mathematics, and physics working on datasets from biology, economics, sociology, political sciences, and many others, network science serves as a paradigm for interdisciplinary research.
One of the major goals in network science is to unravel the relationship between topological graph structure and a network’s function. As evidence suggests, systems from the same fields, i.e. with similar function, tend to exhibit similar structure. However, it is still vague whether a similar graph structure automatically implies likewise function. This dissertation aims at helping to bridge this gap, while particularly focusing on the role of triadic structures.
After a general introduction to the main concepts of network science, existing work devoted to the relevance of triadic substructures is reviewed. A major challenge in modeling triadic structure is the fact that not all three-node subgraphs can be specified independently
of each other, as pairs of nodes may participate in multiple of those triadic subgraphs.
In order to overcome this obstacle, we suggest a novel class of generative network models based on so called Steiner triple systems. The latter are partitions of a graph’s vertices into pair-disjoint triples (Steiner triples). Thus, the configurations on Steiner triples can be specified independently of each other without overdetermining the network’s link
structure.
Subsequently, we investigate the most basic realization of this new class of models. We call it the triadic random graph model (TRGM). The TRGM is parametrized by a probability distribution over all possible triadic subgraph patterns. In order to generate a network instantiation of the model, for all Steiner triples in the system, a pattern is drawn from the distribution and adjusted randomly on the Steiner triple. We calculate the degree distribution of the TRGM analytically and find it to be similar to a Poissonian distribution. Furthermore, it is shown that TRGMs possess non-trivial triadic structure. We discover inevitable correlations in the abundance of certain triadic subgraph
patterns which should be taken into account when attributing functional relevance to particular motifs – patterns which occur significantly more frequently than expected at random. Beyond, the strong impact of the probability distributions on the Steiner triples on the occurrence of triadic subgraphs over the whole network is demonstrated. This interdependence allows us to design ensembles of networks with predefined triadic substructure. Hence, TRGMs help to overcome the lack of generative models needed for assessing the relevance of triadic structure.
We further investigate whether motifs occur homogeneously or heterogeneously distributed over a graph. Therefore, we study triadic subgraph structures in each node’s neighborhood individually. In order to quantitatively measure structure from an individual node’s perspective, we introduce an algorithm for node-specific pattern mining for both directed unsigned, and undirected signed networks. Analyzing real-world datasets, we find that there are networks in which motifs are distributed highly heterogeneously, bound to the proximity of only very few nodes. Moreover, we observe indication for the potential sensitivity of biological systems to a targeted removal of these critical vertices. In addition, we study whole graphs with respect to the homogeneity and homophily of their node-specific triadic structure. The former describes the similarity of subgraph distributions in the neighborhoods of individual vertices. The latter quantifies whether connected vertices
are structurally more similar than non-connected ones. We discover these features to be characteristic for the networks’ origins. Moreover, clustering the vertices of graphs regarding their triadic structure, we investigate structural groups in the neural network of C. elegans, the international airport-connection network, and the global network of diplomatic sentiments between countries. For the latter we find evidence for the instability of triangles considered socially unbalanced according to sociological theories.
Finally, we utilize our TRGM to explore ensembles of networks with similar triadic substructure in terms of the evolution of dynamical processes acting on their nodes. Focusing on oscillators, coupled along the graphs’ edges, we observe that certain triad motifs impose a clear signature on the systems’ dynamics, even when embedded in a larger
network structure.

Data mining has proved its significance in various domains and applications. As an important subfield of the general data mining task, subgroup mining can be used, e.g., for marketing purposes in business domains, or for quality profiling and analysis in medical domains. The goal is to efficiently discover novel, potentially useful and ultimately interesting knowledge. However, in real-world situations these requirements often cannot be fulfilled, e.g., if the applied methods do not scale for large data sets, if too many results are presented to the user, or if many of the discovered patterns are already known to the user. This thesis proposes a combination of several techniques in order to cope with the sketched problems: We discuss automatic methods, including heuristic and exhaustive approaches, and especially present the novel SD-Map algorithm for exhaustive subgroup discovery that is fast and effective. For an interactive approach we describe techniques for subgroup introspection and analysis, and we present advanced visualization methods, e.g., the zoomtable that directly shows the most important parameters of a subgroup and that can be used for optimization and exploration. We also describe various visualizations for subgroup comparison and evaluation in order to support the user during these essential steps. Furthermore, we propose to include possibly available background knowledge that is easy to formalize into the mining process. We can utilize the knowledge in many ways: To focus the search process, to restrict the search space, and ultimately to increase the efficiency of the discovery method. We especially present background knowledge to be applied for filtering the elements of the problem domain, for constructing abstractions, for aggregating values of attributes, and for the post-processing of the discovered set of patterns. Finally, the techniques are combined into a knowledge-intensive process supporting both automatic and interactive methods for subgroup mining. The practical significance of the proposed approach strongly depends on the available tools. We introduce the VIKAMINE system as a highly-integrated environment for knowledge-intensive active subgroup mining. Also, we present an evaluation consisting of two parts: With respect to objective evaluation criteria, i.e., comparing the efficiency and the effectiveness of the subgroup discovery methods, we provide an experimental evaluation using generated data. For that task we present a novel data generator that allows a simple and intuitive specification of the data characteristics. The results of the experimental evaluation indicate that the novel SD-Map method outperforms the other described algorithms using data sets similar to the intended application concerning the efficiency, and also with respect to precision and recall for the heuristic methods. Subjective evaluation criteria include the user acceptance, the benefit of the approach, and the interestingness of the results. We present five case studies utilizing the presented techniques: The approach has been successfully implemented in medical and technical applications using real-world data sets. The method was very well accepted by the users that were able to discover novel, useful, and interesting knowledge.

Das Potenzial der Wissensentdeckung in Daten wird häufig nicht ausgenutzt, was hauptsächlich auf Barrieren zwischen dem Entwicklerteam und dem Endnutzer des Data-Mining zurückzuführen ist. In dieser Arbeit wird ein transparenter Ansatz zum Beschreiben und Erklären von Daten für Entscheidungsträger vorgestellt. In Entscheidungsträger-zentrierten Aufgaben werden die Projektanforderungen definiert und die Ergebnisse zu einer Geschichte zusammengestellt. Eine Anforderung besteht dabei aus einem tabellarischen Bericht und ggf. Mustern in seinem Inhalt, jeweils verständlich für einen Entscheidungsträger. Die technischen Aufgaben bestehen aus einer Datenprüfung, der Integration der Daten in einem Data-Warehouse sowie dem Generieren von Berichten und dem Entdecken von Mustern wie in den Anforderungen beschrieben. Mehrere Data-Mining-Projekte können durch Wissensmanagement sowie eine geeignete Infrastruktur voneinander profitieren. Der Ansatz wurde in zwei Projekten unter Verwendung von ausschließlich Open-Source-Software angewendet.