• Contact
    • Imprint
    • Sitemap
      • Deutsch

UNIWUE UBWUE Universitätsbibliothek

  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen
  • Dewey Decimal Classification
  • 0 Informatik, Informationswissenschaft, allgemeine...
  • 00 Informatik, Wissen, Systeme

004 Datenverarbeitung; Informatik

Refine

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • yes (1)

Year of publication

  • 2015 (1)

Document Type

  • Journal article (1)

Language

  • English (1)

Keywords

  • cell membranes (1)
  • electrolytes (1)
  • hypotonic (1)
  • hypotonic solutions (1)
  • isotonic (1)
  • membrane proteins (1)
  • permeability (1)
  • tonicity (1)

Author

  • Andronic, Joseph (1) (remove)

Institute

  • Theodor-Boveri-Institut für Biowissenschaften (1) (remove)

1 search hit

  • 1 to 1
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100
Hypotonic Activation of the Myo-Inositol Transporter SLC5A3 in HEK293 Cells Probed by Cell Volumetry, Confocal and Super-Resolution Microscopy (2015)
Andronic, Joseph ; Shirakashi, Ryo ; Pickel, Simone U. ; Westerling, Katherine M. ; Klein, Teresa ; Holm, Thorge ; Sauer, Markus ; Sukhorukov, Vladimir L.
Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100–275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200–275 mOsm), Pino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100–125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in Pino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200–2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80–800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.
  • 1 to 1

DINI-Zertifikat     OPUS4 Logo