Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen
Refine
Has Fulltext
- yes (216)
Is part of the Bibliography
- yes (216)
Year of publication
Document Type
- Doctoral Thesis (177)
- Journal article (39)
Keywords
- BERA (10)
- HSM-Satztest (9)
- Sprachverstehen (9)
- Schwindel (8)
- cochlear implant (8)
- vertigo (8)
- Cochlear-Implantat (7)
- Comet Assay (7)
- Neurootologie (7)
- Sprachaudiometrie (7)
Institute
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen (216)
- Graduate School of Life Sciences (6)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (4)
- Klinik und Poliklinik für Strahlentherapie (3)
- Institut für Humangenetik (2)
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (2)
- Pathologisches Institut (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Institut für Klinische Epidemiologie und Biometrie (1)
- Institut für Pharmakologie und Toxikologie (1)
Sonstige beteiligte Institutionen
Pilot study on the value of Raman spectroscopy in the entity assignment of salivary gland tumors
(2021)
Background
The entity assignment of salivary gland tumors (SGT) based on histomorphology can be challenging. Raman spectroscopy has been applied to analyze differences in the molecular composition of tissues. The aim of this study was to evaluate the suitability of RS for entity assignment in SGT.
Methods
Raman data were collected in deparaffinized sections of pleomorphic adenomas (PA) and adenoid cystic carcinomas (ACC). Multivariate data and chemometric analysis were completed using the Unscrambler software.
Results
The Raman spectra detected in ACC samples were mostly assigned to nucleic acids, lipids, and amides. In a principal component-based linear discriminant analysis (LDA) 18 of 20 tumor samples were classified correctly.
Conclusion
In this proof of concept study, we show that a reliable SGT diagnosis based on LDA algorithm appears possible, despite variations in the entity-specific mean spectra. However, a standardized workflow for tissue sample preparation, measurement setup, and chemometric algorithms is essential to get reliable results.
Objective
Growing interest in measuring the cochlear duct length (CDL) has emerged, since it can influence the selection of cochlear implant electrodes. Currently the measurements are performed with ionized radiation imaging. Only a few studies have explored CDL measurements in magnetic resonance imaging (MRI). Therefore, the presented study aims to fill this gap by estimating CDL in MRI and comparing it with multislice computed tomography (CT).
Study Design
Retrospective data analyses of 42 cochleae.
Setting
Tertiary care medical center.
Methods
Diameter (A value) and width (B value) of the cochlea were measured in HOROS software. The CDL and the 2-turn length were determined by the elliptic circular approximation (ECA). In addition, the CDL, the 2-turn length, and the angular length were determined via HOROS software by the multiplanar reconstruction (MPR) method.
Results
CDL values were significantly shorter in MRI by MPR (d = 1.38 mm, P < .001) but not by ECA. Similar 2-turn length measurements were significantly lower in MRI by MPR (d = 1.67 mm) and ECA (d = 1.19 mm, both P < .001). In contrast, angular length was significantly higher in MRI (d = 26.79°, P < .001). When the values were set in relation to the frequencies of the cochlea, no clinically relevant differences were estimated (58 Hz at 28-mm CDL).
Conclusion
In the presented study, CDL was investigated in CT and MRI by using different approaches. Since no clinically relevant differences were found, diagnostics with radiation may be omitted prior to cochlear implantation; thus, a concept of radiation-free cochlear implantation could be established.
This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers. Multi-slice computed tomography (MSCT; 600 µm), conventional flat panel volume computed tomography (fpVCT; 466 µm), micro-fpVCT (197 µm) and secondary reconstructed fpVCT (100 µM) scans were performed and data were loaded into the navigation system. The resulting fiducial registration error (FRE) was analysed, and control of the navigation accuracy was performed. The registration process was very quick and reliable with the screws as fiducials. Compared to using the MSCT data, the micro-fpVCT data led to significantly lower FRE values, whereas conventional fpVCT and secondary reconstructed fpVCT data had no advantage in terms of accuracy. For all imaging modalities, there was no relevant visual deviation when targeting defined anatomical points with a navigation probe. fpVCT data are very well suited for electromagnetic navigation at the lateral skull base. The use of titanium screws as fiducial markers turned out to be ideal for comparing different imaging methods. A further evaluation of this approach by a clinical trial is required.
Objective
To evaluate changing trends in patient collectives, age-related patterns of manifestation, and diagnostic pathways of patients with extrapulmonary head and neck tuberculosis (TB), and to provide strategies to fasten diagnosis in these patients.
Study design
Case control study.
Methods
A 10-year retrospective analysis of 35 patients diagnosed with extrapulmonary TB in the head and neck at a tertiary university institution from 2009 to 2019, with special focus on the influence of the patient's age on consideration of TB and clinical patterns.
Results
The vast majority of patients younger than 40 years had their origin in countries with high TB burden (P = .0003), and TB was considered very early as a differential diagnosis (P = .0068), while most patients older than 40 years were domestic citizens initially suspected for a malignancy, who more often had an underlying immunosuppressive condition (0.0472). Most frequent manifestations in both groups were the lymph nodes, larynx, and oropharynx. Surprisingly, no differences in the rates of open TB or history of TB infection in the family anamnesis were found.
Conclusion
The two groups of patients found most often are younger patients migrating from regions with high TB burden and elderly domestic patients suffering from immunosuppressive conditions, with the latter often being misdiagnosed as malignancies. TB remains an important but difficult differential diagnosis, due to the initially unspecific symptoms and the great variety in the presentation of manifestations in the head and neck.
Locoregional recurrence is a major reason for therapy failure after surgical resection of head and neck squamous cell carcinoma (HNSCC). The physiological process of postoperative wound healing could potentially support the proliferation of remaining tumor cells. The aim of this study was to evaluate the influence of wound fluid (WF) on the cell cycle distribution and a potential induction of epithelial-mesenchymal transition (EMT). To verify this hypothesis, we incubated FaDu and HLaC78 cells with postoperative WF from patients after neck dissection. Cell viability in dependence of WF concentration and cisplatin was measured by flow cytometry. Cell cycle analysis was performed by flow cytometry and EMT-marker expression by rtPCR. WF showed high concentrations of interleukin (IL)-6, IL-8, IL-10, CCL2, MCP-1, EGF, angiogenin, and leptin. The cultivation of tumor cells with WF resulted in a significant increase in cell proliferation without affecting the cell cycle. In addition, there was a significant enhancement of the mesenchymal markers Snail 2 and vimentin, while the expression of the epithelial marker E-cadherin was significantly decreased. After cisplatin treatment, tumor cells incubated with WF showed a significantly higher resistance compared with the control group. The effect of cisplatin-resistance was dependent on the WF concentration. In summary, proinflammatory cytokines are predominantly found in WF. Furthermore, the results suggest that EMT can be induced by WF, which could be a possible mechanism for cisplatin resistance.
To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC\(^-\). Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens.
Causal therapies for the auditory-pathway and inner-ear diseases are still not yet available for clinical application. Regenerative medicine approaches are discussed and examined as possible therapy options. Neural stem cells could play a role in the regeneration of the auditory pathway. In recent years, neural stem and progenitor cells have been identified in the cochlear nucleus, the second nucleus of the auditory pathway. The current investigation aimed to analyze cell maturation concerning cellular calcium activity. Cochlear nuclei from PND9 CD rats were microscopically dissected and propagated as neurospheres in free-floating cultures in stem-cell medium (Neurobasal, B27, GlutaMAX, EGF, bFGF). After 30 days, the dissociation and plating of these cells took place under withdrawal of the growth factors and the addition of retinoic acid, which induces neural cell differentiation. Calcium imaging analysis with BAPTA-1/Oregon Green was carried out at different times during the differentiation phase. In addition, the influence of different voltage-dependent calcium channels was analyzed through the targeted application of inhibitors of the L-, N-, R- and T-type calcium channels. For this purpose, comparative examinations were performed on CN NSCs, and primary CN neurons. As the cells differentiated, a significant increase in spontaneous neuronal calcium activity was demonstrated. In the differentiation stage, specific frequencies of the spontaneous calcium oscillations were measured in different regions of the individual cells. Initially, the highest frequency of spontaneous calcium oscillations was ascertainable in the maturing somata. Over time, these were overtaken by calcium oscillations in the axons and dendrites. Additionally, in the area of the growth cones, an increasing activity was determined. By inhibiting voltage-dependent calcium channels, their expression and function in the differentiation process were confirmed. A comparable pattern of maturation of these channels was found in CN NSCs and primary CN neurons. The present results show that neural stem cells of the rat cochlear nucleus differentiated not only morphologically but also functionally. Spontaneous calcium activities are of great relevance in terms of neurogenesis and integration into existing neuronal structures. These functional aspects of neurogenesis within the auditory pathway could serve as future targets for the exogenous control of neuronal regeneration.
Candida albicans is ubiquitously present, and colonization in the nose and oral cavity is common. In healthy patients, it usually does not act as a pathogen, but in some cases can cause diseases. The influence of C. albicans as a trigger of T cell activation on the pathogenesis of chronic rhinosinusitis (CRS) is controversial, and its exact role is not clear to date. The aim of the present study was to detect and characterize C. albicans-specific CD4+ and CD8+ T cells in patients with CRS, with and without nasal polyps. Tissue and blood samples were collected from patients suffering from chronic rhinosinusitis with (CRSwNP) and without nasal polyps (CRSsNP), and from healthy controls. A peptide pool derived from C. albicans antigen was added to tissue and blood samples. After 6 days, lymphocytes were analyzed by multicolor flow cytometry. Activation was assessed by the intracellular marker Ki-67, and the cytokine secretion was measured. Tissue CD8+ T cells of CRSsNP patients showed a significantly higher proportion of Ki-67+ cells after activation with C. albicans antigen compared to peripheral blood CD8+ T cells. Cytokine secretion in response to C. albicans antigen was similar for all study groups. In this study, C. albicans-specific CD4+ and CD8+ T cells were detected in peripheral blood and mucosal tissue in all study groups. In patients suffering from CRSsNP, C. albicans-specific CD8+ T cells were relatively enriched in the nasal mucosa, suggesting that they might play a role in the pathogenesis of CRSsNP.
In deafness, which is caused by the malfunctioning of the inner ear, an implantation of a cochlear implant (CI) is able to restore hearing. The CI is a neural prosthesis that is located within the cochlea. It replaces the function of the inner hair cells by direct electrical stimulation of the auditory nerve fibers. The CI enables many deaf or severe hearing-impaired people to achieve a good speech perception. Nevertheless, there is a lot of potential for further improvements. Compared to normal-hearing listeners rate pitch discrimination is much worse. Rate pitch discrimination is the ability to distinguish the pitch of two stimuli with two different pulse rates. This ability is important for enjoying music as well as speech perception (in noise). Further, the small dynamic range in electrical hearing (compared to normal-hearing listeners) and therefore the small intensity resolution limits the performance of CI users. Both, rate pitch coding and dynamic range were investigated in this doctoral thesis.
For the first issue, a pitch discrimination task was designed to determine the just-noticeable-difference (JND) in pitch with 200 and 400 pps as reference. Additionally to the default biphasic pulse (single pulse) the experiment was performed with double pulses. The double pulse consists out of two biphasic pulses directly after each other and a small interpulse interval (IPI) in between. Three different IPIs (15, 50, and 150 µs) were tested. The statistical analysis of JNDs revealed no significant effects between stimulation with single-pulse or double-pulse trains.
A follow-up study investigated an alternating pulse train consisting of single and double pulses. To investigate if the 400 pps alternating pulse train is comparable in pitch with the 400 pps single-pulse train, a pairwise pitch comparison test was conducted. The alternating pulse train was compared with single-pulse trains at 200, 300 and 400 pps. The results showed that the alternating pulse train is for most subjects similar in pitch with the 200 pps single-pulse train. Therefore, pitch perception seemed to be dominated by the double pulses within the pulse train.
Accordingly, double pulses with different amplitudes were tested. Based on the facilitation effect, a larger neuronal response was expected by stimulating with two pulses with a short IPI within the temporal facilitation range. In other studies, this effect was shown to be maximal in CIs of the manufacturer Cochlear, with first pulse amplitudes set at or slightly below the electrically evoked compound action potential (ECAP) threshold. The second pulse amplitude did not influence the facilitation effect and therefore could be choose at will. Similarly, this effect was tested in this thesis with CIs of the manufacturer MED-EL. Nevertheless, to achieve a proper signal-to-noise ratio, technical issues had to be addressed like a high noise floor, resulting in incorrect determination of the ECAP threshold. After solving this issues, the maximum facilitation effect was around the ECAP threshold as in the previous study with Cochlear. For future studies this effect could be used in a modified double pulse rate pitch experiment with the first pulse amplitude at ECAP threshold and the second pulse amplitude variable to set the most comfortable loudness level (MCL).
The last study within this thesis investigated the loudness perception at two different loudness levels and the resulting dynamic range for different interphase-gaps (IPG). A larger IPG can reduce the amplitude at same loudness level to save battery power. However, it was unknown if the IPG has an influence on the dynamic range. Different IPGs (10 and 30 µs) were compared with the default IPG (2.1 µs) in a loudness matching experiment. The experiment was performed at the most comfortable loudness level (MCL) of the subject and the amplitude of half the dynamic range (50%-ADR). An upper dynamic range was calculated from the results of MCL and 50%-ADR (therefore not the whole dynamic range was covered). As expected from previous studies a larger IPG resulted in smaller amplitudes. However, the observed effect was larger at MCL than at 50%-ADR which resulted in a smaller upper dynamic range. This is the first time a decrease of this dynamic range was shown.
Einleitung: Die sog. Direct-Drive-Simulation (DDS) bietet Patienten präoperativ eine Klangsimulation des "Vibrant Soundbridge®-Hörens". Ein Floating-Mass-Transducer (FMT) wird auf das Trommelfell oder die rekonstruierte Paukenabdeckung aufgesetzt, worüber den Patienten Testsignale dargeboten werden. Ziel der Arbeit war die Evaluation einer Weiterentwicklung des Tests hin zur DDS-Tonaudiometrie und DDS-Sprachaudiometrie. Bei Bestätigung der ersten Hypothese, soll darüber hinaus geprüft werden, ob eine Hirnstammaudiometrie (BERA) über den DDS durchgeführt werden kann. Ziel der vorliegenden Arbeit ist es Referenzdaten an einer Population Normalhörender zu generieren. Zusammenfassung: Sowohl die DDS-Ton- und Sprachaudiometrie als auch die Ableitung einer BERA über den DDS-FMT sind möglich. Mit der DDS-BERA besteht nun erstmals die Möglichkeit eines objektiven DDS-Tests präoperativ. Die notwendige Einschätzung der Ankopplungsqualität zur korrekten Interpretation der DDS-BERA lässt sich elegant mit Hilfe der DDS-Tonaudiometrie ermitteln.