Medizinische Fakultät
Refine
Is part of the Bibliography
- yes (162)
Year of publication
Document Type
- Doctoral Thesis (108)
- Journal article (52)
- Preprint (1)
- Report (1)
Keywords
- Maus (5)
- Myc (4)
- Plasmozytom (4)
- Handgelenk (3)
- Multiple Sklerose (3)
- Multiples Myelom (3)
- Schlaganfall (3)
- T-Lymphozyt (3)
- infection (3)
- microRNA (3)
Institute
- Medizinische Fakultät (162)
- Graduate School of Life Sciences (44)
- Theodor-Boveri-Institut für Biowissenschaften (8)
- Rudolf-Virchow-Zentrum (6)
- Fakultät für Biologie (4)
- Missionsärztliche Klinik (4)
- Lehrstuhl für Orthopädie (3)
- Institut für Informatik (2)
- Institut für Molekulare Infektionsbiologie (2)
- Institut für Psychologie (2)
Sonstige beteiligte Institutionen
- Comprehensive Cancer Center Mainfranken (2)
- Helmholtz Institute for RNA-based Infection Research (HIRI) (2)
- Lehrkrankenhaus II. Medizinische Klinik Klinikum Coburg (2)
- Bayer AG, Research & Development, Pharmaceuticals, Investigational Toxicology (1)
- Boston Children's Hospital (1)
- Comprehensive Heart Failure Center Wuerzburg (CHFC) (1)
- Eberhard Karls Universität Tübingen (1)
- Handchirurgie Rhön-Klinikum Campus Bad Neustadt a.d. Saale (1)
- Institut für diagnostische und interventionelle Radiologie, Klinikum Ingolstadt (1)
- Interdisciplinary Bank of Biological Material and Data Würzburg (IBDW) (1)
Ziel:
Die mediokarpale Teilarthrodese (MKTA) des Handgelenks ist eine sehr häufig durchgeführte Rettungsoperation, wenn intolerable Schmerzen aufgrund eines KK ein operatives Vorgehen erforderlich machen. Zahlreiche Studien beschreiben eine deutliche Beschwerdelinderung durch die MKTA, aber keine vollständige Schmerzfreiheit. Die Ursachen hierfür sind vielfältig, unter anderem kommt eine Pisotriquetralarthrose in Be-tracht. Die Entstehung einer solchen wird durch die Handwurzelfehlstellung beim KK begünstigt [8]. In dieser Arbeit wurde der Einfluss einer PT-Arthrose auf das mittel- bis langfristige Ergebnis einer MKTA untersucht. Des Weiteren wurde untersucht, inwie-fern sich eine PT-Arthrose nach einer MKTA entwickeln kann, sofern diese nicht bereits zum Operationszeitpunkt bestand.
Methode:
Es wurden 48 Personen, die zwischen 2004 und 2016 eine MKTA erhielten und deren Status hinsichtlich einer PT-Arthrose zum OP-Zeitpunkt durch eine Schnitt-bilddiagnostik analysiert werden konnte, in die Studie eingeschlossen. Zum Zeitpunkt der MKTA hatten 25 Patienten eine ausgeprägte PT-Arthrose und 23 Patienten keine PT-Arthrose. Die Patienten wurden durchschnittlich 75 Monate postoperativ klinisch und radiologisch nachuntersucht. Es wurde der Krimmer-Score und der DASH-Score erfasst. Ferner wurden klinische Untersuchungsparameter erhoben sowie die Handkraft und Handgelenksbeweglichkeit gemessen. Arthrose-Zeichen im pisotriquetralen und radiolunären Gelenk wurden durch Röntgenaufnahmen des Handgelenks in zwei Ebe-nen und einer Pisiformen-Zielaufnahme beurteilt.
Ergebnis:
Es zeigte sich, dass eine PT-Arthrose keinen negativen Einfluss auf das Er-gebnis einer MKTA ausübt. Darüber hinaus entwickelten einige Patienten auch nach einer MKTA eine PT-Arthrose, sodass die veränderte Biomechanik durch die Operation keinen protektiven Faktor hierfür darstellt hat. Als klinischer Test erwies sich der Schmerz am Pisiforme bei passivem Überstrecken des Handgelenks als aussagekräftigs-ter Untersuchungsparameter hinsichtlich des Vorhandenseins einer PT-Arthrose.
Diskussion:
Selbst bei einer radiologisch nachgewiesenen PT-Arthrose kann ein KK ausschließlich mit einer MKTA behandelt werden. Halten nach einer MKTA ulnopalma-re Beschwerden am Handgelenk an oder treten neu auf, muss ätiologisch eine PT-Arthrose in Erwägung gezogen, abgeklärt und gegebenenfalls behandelt werden.
Bone represents a common site of metastases for several solid tumors. However, the ability of neuroendocrine neoplasms (NENs) to localize to bone has always been considered a rare and late event. Thanks to the improvement of therapeutic options, which results in longer survival, and of imaging techniques, particularly after the introduction of positron emission tomography (PET) with gallium peptides, the diagnosis of bone metastases (BMs) in NENs is increasing. The onset of BMs can be associated with severe skeletal complications that impair the patient's quality of life. Moreover, BMs negatively affect the prognosis of NEN patients, bringing out the lack of curative treatment options for advanced NENs. The current knowledge on BMs in gastro-entero-pancreatic (GEP) and bronchopulmonary (BP) NENs is still scant and is derived from a few retrospective studies and case reports. This review aims to perform a critical analysis of the evidence regarding the role of BMs in GEP- and BP-NENs, focusing on the molecular mechanisms underlining the development of BMs, as well as clinical presentation, diagnosis, and treatment of BMs, in an attempt to provide suggestions that can be used in clinical practice.
Colorectal cancer (CRC) is the second most common tumour disease in Germany, with the sequential accumulation of certain mutations playing a decisive role in the transition from adenoma to carcinoma. In particular, deregulation of the Wnt signalling pathway and the associated deregulated expression of the MYC oncoprotein play a crucial role. Targeting MYC thus represents an important therapeutic approach in the treatment of tumours. Since direct inhibition of MYC is challenging, various approaches have been pursued to date to target MYC indirectly. The MYC 5' UTR contains an internal ribosomal entry site (IRES), which has a particular role in the initiation of MYC translation, especially in multiple myeloma. As basis for this work, it was hypothesised on the basis of previous data that translation of MYC potentially occurs via its IRES in CRC as well. Based on this, two IRES inhibitors were tested for their potential to regulate MYC expression in CRC cells. In addition, alternative, 5’ UTR-dependent translation of MYC and interacting factors were investigated. EIF3D was identified as a MYC 5' UTR binding protein which has the potential to regulate MYC expression in CRC. The results of this work suggest that there is a link between eIF3D and MYC expression/translation, rendering eIF3D a potential therapeutic target for MYC-driven CRCs.
Among the defense strategies developed in microbes over millions of years, the innate adaptive CRISPR-Cas immune systems have spread across most of bacteria and archaea. The flexibility, simplicity, and specificity of CRISPR-Cas systems have laid the foundation for CRISPR-based genetic tools. Yet, the efficient administration of CRISPR-based tools demands rational designs to maximize the on-target efficiency and off-target specificity. Specifically, the selection of guide RNAs (gRNAs), which play a crucial role in the target recognition of CRISPR-Cas systems, is non-trivial. Despite the fact that the emerging machine learning techniques provide a solution to aid in gRNA design with prediction algorithms, design rules for many CRISPR-Cas systems are ill-defined, hindering their broader applications.
CRISPR interference (CRISPRi), an alternative gene silencing technique using a catalytically dead Cas protein to interfere with transcription, is a leading technique in bacteria for functional interrogation, pathway manipulation, and genome-wide screens. Although the application is promising, it also is hindered by under-investigated design rules. Therefore, in this work, I develop a state-of-art predictive machine learning model for guide silencing efficiency in bacteria leveraging the advantages of feature engineering, data integration, interpretable AI, and automated machine learning. I first systematically investigate the influential factors that attribute to the extent of depletion in multiple CRISPRi genome-wide essentiality screens in Escherichia coli and demonstrate the surprising dominant contribution of gene-specific effects, such as gene expression level. These observations allowed me to segregate the confounding gene-specific effects using a mixed-effect random forest (MERF) model to provide a better estimate of guide efficiency, together with the improvement led by integrating multiple screens. The MERF model outperformed existing tools in an independent high-throughput saturating screen. I next interpret the predictive model to extract the design rules for robust gene silencing, such as the preference for cytosine and disfavoring for guanine and thymine within and around the protospacer adjacent motif (PAM) sequence. I further incorporated the MERF model in a web-based tool that is freely accessible at www.ciao.helmholtz-hiri.de.
When comparing the MERF model with existing tools, the performance of the alternative gRNA design tool optimized for CRISPRi in eukaryotes when applied to bacteria was far from satisfying, questioning the robustness of prediction algorithms across organisms. In addition, the CRISPR-Cas systems exhibit diverse mechanisms albeit with some similarities. The captured predictive patterns from one dataset thereby are at risk of poor generalization when applied across organisms and CRISPR-Cas techniques. To fill the gap, the machine learning approach I present here for CRISPRi could serve as a blueprint for the effective development of prediction algorithms for specific organisms or CRISPR-Cas systems of interest. The explicit workflow includes three principle steps: 1) accommodating the feature set for the CRISPR-Cas system or technique; 2) optimizing a machine learning model using automated machine learning; 3) explaining the model using interpretable AI. To illustrate the applicability of the workflow and diversity of results when applied across different bacteria and CRISPR-Cas systems, I have applied this workflow to analyze three distinct CRISPR-Cas genome-wide screens. From the CRISPR base editor essentiality screen in E. coli, I have determined the PAM preference and sequence context in the editing window for efficient editing, such as A at the 2nd position of PAM, A/TT/TG downstream of PAM, and TC at the 4th to 5th position of gRNAs. From the CRISPR-Cas13a screen in E. coli, in addition to the strong correlation with the guide depletion, the target expression level is the strongest predictor in the model, supporting it as a main determinant of the activation of Cas13-induced immunity and better characterizing the CRISPR-Cas13 system. From the CRISPR-Cas12a screen in Klebsiella pneumoniae, I have extracted the design rules for robust antimicrobial activity across K. pneumoniae strains and provided a predictive algorithm for gRNA design, facilitating CRISPR-Cas12a as an alternative technique to tackle antibiotic resistance.
Overall, this thesis presents an accurate prediction algorithm for CRISPRi guide efficiency in bacteria, providing insights into the determinants of efficient silencing and guide designs. The systematic exploration has led to a robust machine learning approach for effective model development in other bacteria and CRISPR-Cas systems. Applying the approach in the analysis of independent CRISPR-Cas screens not only sheds light on the design rules but also the mechanisms of the CRISPR-Cas systems. Together, I demonstrate that applied machine learning paves the way to a deeper understanding and a broader application of CRISPR-Cas systems.
Colorectal Cancer (CRC) is the third most common cancer in the US. The majority of CRC cases are due to deregulated WNT-signalling pathway. These alterations are mainly caused by mutations in the tumour suppressor gene APC or in CTNNB1, encoding the key effector protein of this pathway, β-Catenin. In canonical WNT-signalling, β-Catenin activates the transcription of several target genes, encoding for proteins involved in proliferation, such as MYC, JUN and NOTCH. Being such a critical regulator of these proto-oncogenes, the stability of β-Catenin is tightly regulated by the Ubiquitin-Proteasome System. Several E3 ligases that ubiquitylate and degrade β-Catenin have been described in the past, but the antagonists, the deubiquitylases, are still unknown. By performing an unbiased siRNA screen, the deubiquitylase USP10 was identified as a de novo positive regulator of β-Catenin stability in CRC derived cells. USP10 has previously been shown in the literature to regulate both mutant and wild type TP53 stability, to deubiquitylate NOTCH1 in endothelial cells and to be involved in the regulation of AMPKα signalling. Overall, however, its role in colorectal tumorigenesis remains controversial. By analysing publicly available protein and gene expression data from colorectal cancer patients, we have shown that USP10 is strongly upregulated or amplified upon transformation and that its expression correlates positively with CTNNB1 expression. In contrast, basal USP10 levels were found in non-transformed tissues, but surprisingly USP10 is upregulated in intestinal stem cells. Endogenous interaction studies in CRC-derived cell lines, with different extend of APCtruncation, revealed an APC-dependent mode of action for both proteins. Furthermore, by utilising CRISPR/Cas9, shRNA-mediated knock-down and overexpression of USP10, we could demonstrate a regulation of β-Catenin stability by USP10 in CRC cell lines. It is widely excepted that 2D cell culture systems do not reflect complexity, architecture and heterogeneity and are therefore not suitable to answer complex biological questions. To overcome this, we established the isolation, cultivation and genetically modification of murine intestinal organoids and utilised this system to study Usp10s role ex vivo. By performing RNA sequencing, dependent on different Usp10 levels, we were able to recapitulate the previous findings and demonstrated Usp10 as important regulator of β-dependent regulation of stem cell homeostasis. Since genetic depletion of USP10 resulted in down-regulation of β-Catenin-dependent transcription, therapeutic intervention of USP10 in colorectal cancer was also investigated. Commercial and newly developed inhibitors were tested for their efficacy against USP10, but failed to significantly inhibit USP10 activity in colorectal cancer cells. To validate the findings from this work also in vivo, development of a novel mouse model for colorectal cancer has begun. By combining CRISPR/Cas9 and classical genetic engineering with viral injection strategies, WT and genetically modified mice could be transformed and, at least in some animals, intestinal lesions were detectable at the microscopic level. The inhibition of USP10, which we could describe as a de novo tumour-specific regulator of β-Catenin, could become a new therapeutic strategy for colorectal cancer patients.
The immune system is responsible for the preservation of homeostasis whenever a given organism is exposed to distinct kinds of perturbations. Given the complexity of certain organisms like mammals, and the diverse types of challenges that they encounter (e.g. infection or disease), the immune system evolved to harbor a great variety of distinct immune cell populations with specialized functions. For instance, the family of T cells is sub-divided into conventional (Tconv) and unconventional T cells (UTCs). Tconv form part of the adaptive arm of the immune system and are comprised of αβ CD4+ or CD8+ cells that differentiate from naïve to effector and memory populations upon activation and are essential during infection and cancer. Furthermore, UTCs, which include γδ T cells, NKT and MAIT, are involved in innate and adaptive immune responses, due to their dual mode of activation, through cytokines (innate-like) or TCR (adaptive), and function. Despite our understanding of the basic functions of T cells in several contexts, a great number of open questions related to their basic biology remain. For instance, the mechanism behind the differentiation of naïve CD4+ and CD8+ T cells into effector and memory populations is not fully understood. Moreover, the exact function and relevance of distinct UTC subpopulations in a physiological context have not been fully clarified. Here, we investigated the factors mediating naïve CD8+ T cell differentiation into effector and memory cells. By using flow cytometry, mass spectrometry, enzymatic assays, and transgenic mouse models, we found that the membrane bound enzyme sphingomyelin-phosphodiesterase acid-like 3b (Smpdl3b) is crucial for the maintenance of memory CD8+ T cells. Our data show that the absence of Smpdl3b leads to diminished CD8+ T cell memory, and a loss of stem-like memory populations due to an aggravated contraction. Our scRNA-seq data suggest that Smpdl3b could be involved in clathrinmediated endocytosis through modulation of Huntingtin interacting protein 1 (Hip1) levels, likely regulating TCR-independent signaling events. Furthermore, in this study we explored the role of UTCs in lymph node-specific immune responses. By using transgenic mouse models for photolabeling, lymph node transplantation models, infection models and flow cytometry, we demonstrate that S1P regulates the migration of tissue-derived UTC from tissues to draining lymph nodes, resulting in heterogeneous immune responses mounted by lymph nodes draining different tissues. Moreover, our unbiased scRNAseq and single lineage-deficient mouse models analysis revealed that all UTC lineages (γδ T cells, NKT and MAIT) are organized in functional units, based on transcriptional homogeneity, shared microanatomical location and migratory behavior, and numerical and functional redundancy. Taken together, our studies describe additional cell intrinsic (Smpdl3b) and extrinsic (S1Pmediated migration) functions of sphingolipid metabolism modulating T cell biology. We propose the S1P/S1PR1/5 signaling axis as the potential survival pathway for Smpdl3b+ memory CD8+ T cells and UTCs, mainly in lymph nodes. Possibly, Smpdl3b regulates S1P/S1PR signaling by balancing ligandreceptor endocytosis, while UTCs migrate to lymph nodes during homeostasis to be exposed to specific levels of S1P that assure their maintenance. Our results are clinically relevant, since several drugs modulating the S1P/S1PR signaling axis or the levels of Smpdl3b are currently used to treat human diseases, such as multiple sclerosis and B cell-mediated diseases. We hope that our discoveries will inspire future studies focusing on sphingolipid metabolism in immune cell biology.
Kardiovaskuläre und renale Komorbiditäten in Zusammenhang mit chronischem Hypoparathyreoidismus
(2024)
Der cHPT ist eine seltene Erkrankung, die durch zu niedriges Kalzium im Serum aufgrund einer zu geringen PTH-Sekretion über 6 Monate charakterisiert ist. Auch bei Patienten mit einem gut kontrollierten cHPT treten Komorbiditäten und Langzeitkomplikationen auf, die jedoch bisher kaum in prospektiven Studien untersucht wurden.
Ziel dieser Arbeit war es daher, im Rahmen einer systematischen und prospektiv erfassten Studie das Auftreten kardiovaskulärer und renaler Komorbiditäten bei Patienten mit cHPT zu untersuchen und mögliche Prädiktoren für diese zu ermitteln. Außerdem erfolgte ein Vergleich mit gematchten Kontrollgruppen der deutschen Normalbevölkerung mithilfe der SHIP-TREND Studie.
Patienten mit cHPT zeigten eine signifikant höhere QTc-Zeit, eine höhere Prävalenz für QTc-Zeit-Verlängerung und signifikant höhere systolische und diastolische Blutdruckwerte trotz tendenziell, jedoch nicht signifikant, häufigerer Einnahme antihypertensiver Medikamente. In der Echokardiographie lagen eine geringere linksventrikuläre Masse, eine geringere Prävalenz für linksventrikuläre Hypertrophie und signifikant häufiger Klappenstenosen vor.
Eine renale Insuffizienz lag mit 21% der Patienten mit cHPT signifikant häufiger als bei gesunden Kontrollpersonen vor. Die Prävalenz renaler Kalzifikationen betrug 9,6%.
Mögliche Risikofaktoren für das Auftreten kardiovaskulärer und renaler Komorbiditäten bei cHPT sind weiterhin unklar. In dieser Studie zeigte sich eine mögliche Assoziation zwischen den Elektrolytstörungen wie Hyperphosphatämie und Hypomagnesiämie, der Hyperkalziurie und dem PTH-Mangel mit valvulären, vaskulären und renalen Kalzifikationen sowie den Blutdruckwerten und der Nierenfunktion.
Demnach erscheint eine Überwachung der Serumelektrolyte sowie der Kalziumausscheidung im Urin notwendig und essenziell. Auch die Bedeutung der PTH-Ersatztherapie ist weiterhin im Hinblick auf die Prävention kardiovaskulärer und renaler Erkrankungen unklar.
Besides their central role in haemostasis and thrombosis, platelets are increasingly recognised as versatile effector cells in inflammation, the innate and adaptive immune response, extracellular matrix reorganisation and fibrosis, maintenance of barrier and organ integrity, and host response to pathogens. These platelet functions, referred to as thrombo-inflammation and immunothrombosis, have gained major attention in the COVID-19 pandemic, where patients develop an inflammatory disease state with severe and life-threatening thromboembolic complications. In the CRC/TR 240, a highly interdisciplinary team of basic, translational and clinical scientists explored these emerging roles of platelets with the aim to develop novel treatment concepts for cardiovascular disorders and beyond. We have i) unravelled mechanisms leading to life-threatening thromboembolic complica-tions following vaccination against SARS-CoV-2 with adenoviral vector-based vaccines, ii) identified unrecognised functions of platelet receptors and their regulation, offering new potential targets for pharmacological intervention and iii) developed new methodology to study the biology of megakar-yocytes (MKs), the precursor cells of platelets in the bone marrow, which lay the foundation for the modulation of platelet biogenesis and function. The projects of the CRC/TR 240 built on the unique expertise of our research network and focussed on the following complementary fields: (A) Cell bi-ology of megakaryocytes and platelets and (B) Platelets as regulators and effectors in disease. To achieve this aim, we followed a comprehensive approach starting out from in vitro systems and animal models to clinical research with large prospective patient cohorts and data-/biobanking. Despite the comparably short funding period the CRC/TR 240 discovered basic new mechanisms of platelet biogenesis, signal transduction and effector function and identified potential MK/platelet-specific molecular targets for diagnosis and therapy of thrombotic, haemorrhagic and thrombo-inflammatory disease states.
Purpose
The purpose of this study is to investigate changes over time in quality of life (QoL) in incurable lung cancer patients and the impact of determinants like molecular alterations (MA).
Methods
In a prospective, longitudinal, multicentric study, we assessed QoL, symptom burden, psychological distress, unmet needs, and prognostic understanding of patients diagnosed with incurable lung cancer at the time of the diagnosis (T0) and after 3 (T1), 6 (T2) and 12 months (T3) using validated questionnaires like FACT-L, National Comprehensive Cancer Network (NCCN) Distress Thermometer (DT), PHQ-4, SCNS-SF-34, and SEIQoL.
Results
Two hundred seventeen patients were enrolled, 22 (10%) with reported MA. QoL scores improved over time, with a significant trend for DT, PHQ-4, and SCNS-SF-34. Significant determinants for stable or improving scores over time were survival > 6 months, performance status at the time of diagnosis, and presence of MA. Patients with MA showed better QoL scores (FACT-L at T1 104.4 vs 86.3; at T2 107.5 vs 90.0; at T3 100.9 vs 92.8) and lower psychological distress (NCCN DT at T1 3.3 vs 5; at T2 2.7 vs 4.5; at T3 3.7 vs 4.5; PHQ-4 at T1 2.3 vs 4.1; at T2 1.7 vs 3.6; at T3 2.2 vs 3.6), but also a worsening of the scores at 1 year and a higher percentage of inaccurate prognostic understanding (27 vs 17%) compared to patients without MA.
Conclusion
Patients with tumors harboring MA are at risk of QoL deterioration during the course of the disease. Physicians should adapt their communication strategies in order to maintain or improve QoL.
Bulk RNA sequencing technologies have provided invaluable insights into host and bacterial gene expression and associated regulatory networks. Nevertheless, the majority of these approaches report average expression across cell populations, hiding the true underlying expression patterns that are often heterogeneous in nature. Due to technical advances, single-cell transcriptomics in bacteria has recently become reality, allowing exploration of these heterogeneous populations, which are often the result of environmental changes and stressors. In this work, we have improved our previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-seq (MATQ-seq), achieving a higher throughput through the integration of automation. We also selected a more efficient reverse transcriptase, which led to reduced cell loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a large set of single Salmonella cells sampled over different growth conditions revealed improved gene coverage and a higher gene detection limit compared to our original protocol and allowed us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously described phenotypic heterogeneity in Salmonella in regard to expression of pathogenicity-associated genes. Overall, the low percentage of cell loss and high gene detection limit makes the improved MATQ-seq protocol particularly well suited for studies with limited input material, such as analysis of small bacterial populations in host niches or intracellular bacteria.
IMPORTANCE: Gene expression heterogeneity among isogenic bacteria is linked to clinically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent development of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of cell-to-cell variability in bacterial populations and the mechanisms underlying these phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, reduced cell loss, and improved transcript capture rate and gene coverage. Use of a more efficient reverse transcriptase and the integration of an rRNA depletion step, which can be adapted to other bacterial single-cell workflows, was instrumental for these improvements. Applying the protocol to the foodborne pathogen Salmonella, we confirmed transcriptional heterogeneity across and within different growth phases and demonstrated that our workflow captures small regulatory RNAs at a single-cell level. Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for experimental settings in which the starting material is limited, such as infected tissues.