Institut für Klinische Biochemie und Pathobiochemie
Refine
Is part of the Bibliography
- yes (79)
Year of publication
Document Type
- Doctoral Thesis (49)
- Journal article (30)
Keywords
- Thrombozyt (12)
- platelets (9)
- VASP (7)
- LASP-1 (6)
- Vasodilatator-stimuliertes Phosphoprotein (6)
- Thrombozyten (4)
- endothelial cells (4)
- phosphorylation (4)
- Brustkrebs (3)
- Clopidogrel (3)
Institute
- Institut für Klinische Biochemie und Pathobiochemie (79)
- Medizinische Klinik und Poliklinik II (3)
- Theodor-Boveri-Institut für Biowissenschaften (3)
- Graduate School of Life Sciences (2)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (2)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (2)
- Klinik und Poliklinik für Nuklearmedizin (2)
- Lehrstuhl für Biochemie (2)
- Medizinische Klinik und Poliklinik I (2)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (1)
RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54\(^{nrb}\) marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA–RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.
The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.
Background
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. Tumor-related glucocorticoid excess is present in similar to 60% of patients and associated with particularly poor prognosis. Results of first clinical trials using immune checkpoint inhibitors were heterogeneous. Here we characterize tumor-infiltrating T lymphocytes (TILs) in ACC in association with glucocorticoids as potential explanation for resistance to immunotherapy.
Methods
We performed immunofluorescence analysis to visualize tumor-infiltrating T cells (CD3\(^+\)), T helper cells (CD3\(^+\)CD4\(^+\)), cytotoxic T cells (CD3\(^+\)CD8\(^+\)) and regulatory T cells (Tregs; CD3\(^+\)CD4\(^+\)FoxP3\(^+\)) in 146 ACC tissue specimens (107 primary tumors, 16 local recurrences, 23 metastases). Quantitative data of immune cell infiltration were correlated with clinical data (including glucocorticoid excess).
Results
86.3% of ACC specimens showed tumor infiltrating T cells (7.7 cells/high power field (HPF)), including T helper (74.0%, 6.7 cells/HPF), cytotoxic T cells (84.3%, 5.7 cells/HPF) and Tregs (49.3%, 0.8 cells/HPF). The number of TILs was associated with better overall survival (HR for death: 0.47, 95% CI 0.25 to 0.87), which was true for CD4\(^+\)- and CD8\(^+\) subpopulations as well. In localized, non-metastatic ACC, the favorable impact of TILs on overall and recurrence-free survival was manifested even independently of ENSAT (European Network for the Study of Adrenal Tumors) stage, resection status and Ki67 index. T helper cells were negatively correlated with glucocorticoid excess (Phi=-0.290, p=0.009). Patients with glucocorticoid excess and low TILs had a particularly poor overall survival (27 vs. 121 months in patients with TILs without glucocorticoid excess).
Conclusion
Glucocorticoid excess is associated with T cell depletion and unfavorable prognosis. To reactivate the immune system in ACC by checkpoint inhibitors, an inhibition of adrenal steroidogenesis might be pivotal and should be tested in prospective studies.
In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms.
Background: In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction.
Methods and Results: We generated double-deficient mice for Mertk and Mfge8 (Mertk\(^{-/-}\)/Mfge8\(^{-/-}\)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk\(^{-/-}\)), or Mfge8-deficient (Mfge8\(^{-/-}\)) animals, Mertk\(^{-/-}\)/Mfge8\(^{-/-}\) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C\(^{High and Low}\) monocytes and macrophages. In parallel, Mertk\(^{-/-}\)/Mfge8\(^{-/-}\) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C\(^{High}\) and Ly6C\(^{Low}\) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C\(^{High}\)/Ly6C\(^{Low}\) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre\(^+\)/VEGFA\(^{fl/fl}\) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis.
Conclusions: After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart.
Background
While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr\(^{−/-}\) mouse model.
Methods
We used Ldlr\(^{−/-}\) mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr\(^{−/-}\) mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds.
Results
We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr\(^{−/-}\) mice compared to all other groups (P < 0.05). Ldlr\(^{−/-}\) animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr\(^{−/-}\) mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr\(^{−/-}\) mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions.
Conclusions
In Ldlr\(^{−/-}\) mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr\(^{−/-}\) mice appear to be an adequate animal model for research into CSVD.
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.
Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14\(^{++}\)CD16\(^{-}\) classical monocytes, CD14\(^{+}\)CD16\(^{++}\) non-classical monocytes and CD14\(^{++}\)CD16\(^{+}\) intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14\(^{++}\)CD16\(^{+}\) intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14\(^{++}\)CD16\(^{-}\) classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis.
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Immunoassays are routinely used as research tools to measure intracellular cAMP and cGMP concentrations. Ideally, this application requires antibodies with high sensitivity and specificity. The present work evaluates the cross-reactivity of commercially available cyclic nucleotide analogs with two non-radioactive and one radioactive cAMP and cGMP immunoassay. Most of the tested cyclic nucleotide analogs showed low degree competition with the antibodies; however, with Rp-cAMPS, 8-Br-cGMP and 8-pCPT-cGMP, a strong cross-reactivity with the corresponding cAMP and cGMP, respectively, immunoassays was observed. The determined EIA-binding constants enabled the measurement of the intracellular cyclic nucleotide concentrations and revealed a time- and lipophilicity-dependent cell membrane permeability of the compounds in the range of 10–30% of the extracellular applied concentration, thus allowing a more accurate prediction of the intracellular analog levels in a given experiment.