Lehrstuhl für Chemische Technologie der Materialsynthese
Refine
Has Fulltext
- yes (55)
Is part of the Bibliography
- yes (55)
Year of publication
Document Type
- Doctoral Thesis (41)
- Journal article (14)
Keywords
- Sol-Gel-Verfahren (9)
- Polymere (7)
- Biomaterial (5)
- Beschichtung (4)
- Dünne Schicht (3)
- Lichtstreuung (3)
- Ringöffnungspolymerisation (3)
- Supramolekulare Chemie (3)
- Biologischer Abbau (2)
- Eisenoxide (2)
Institute
- Lehrstuhl für Chemische Technologie der Materialsynthese (55)
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (3)
- Institut für Organische Chemie (2)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (2)
- Graduate School of Science and Technology (1)
- Institut für Pharmazie und Lebensmittelchemie (1)
- Lehrstuhl für Silicatchemie (1)
- Medizinische Klinik und Poliklinik I (1)
- Physikalisches Institut (1)
Sonstige beteiligte Institutionen
- Fraunhofer-Institut für Silicatforschung ISC (3)
- Fraunhofer Institut für Silicatforschung ISC (2)
- Fraunhofer-Institut für Silicatforschung (2)
- Bayerisches Geoinstitut, Universität Bayreuth (1)
- Fraunhofer Institut für Silicatforschung (Würzburg) (1)
- Fraunhofer-Institut für Silicatforschung ISC, Würzburg (1)
- Lehrstuhl für Anorganische Chemie I, Universität Bayreuth (1)
Detaillierte Einblicke in die Struktur von mit Wirkstoffen beladenen Polymermizellen sind rar, aber wichtig um gezielt optimierte Transportsysteme entwickeln zu können. Wir konnten beobachten, dass eine Erhöhung der Curcumin‐Beladung von Triblockcopolymeren auf Basis von Poly(2‐oxazolinen) und Poly(2‐oxazinen) schlechtere Auflösungseigenschaften nach sich zieht. Mitthilfe von Festkörper‐NMR‐Spektroskopie und komplementären Techniken ist es möglich, ein ladungsabhängiges Strukturmodell auf molekularer Ebene zu erstellen, das eine Erklärung für die beobachteten Unterschiede liefert. Dabei belegen die Änderungen der chemischen Verschiebungen und Kreuzsignale in 2D‐NMR‐Experimenten die Beteiligung des hydrophoben Polymerblocks an der Koordination der Curcumin‐Moleküle, während bei höherer Beladung auch eine zunehmende Wechselwirkung mit dem hydrophilen Polymerblock beobachtet wird. Letztere könnte elementar für die Stabilisierung von ultrahochbeladenen Polymermizellen sowie das Design von verbesserten Wirkstofftransportsystemen sein.
Aluminium-Kupfer-Legierungen des Typs 2xxx erhalten ihre Festigkeit während der Auslagerung an Raumtemperatur oder erhöhter Temperatur – auch Alterung genannt – durch die Bildung kupferhaltiger Ausscheidungen. Größe, räumliche Verteilung und Kristallstruktur dieser Ausscheidungen sind maßgeblich für die mechanischen Eigenschaften dieser Legierungen. Die Zugabe geringer Mengen (100 ppm) an Elementen wie In oder Sn kann das Ausscheidungsverhalten und damit auch die mechanischen Eigenschaften des Systems stark verändern. Die vorliegende Arbeit beschäftigt sich mit dem Einfluss dieser Spurenelemente auf die Ausscheidungsbildung in Al-Cu(-Mg)-Legierungen und der damit verbundenen Veränderung der Festigkeit. Hauptaugenmerk liegt dabei auf der in-situ Charakterisierung der vorherrschenden Ausscheidungen und deren Kinetik, welche durch die Interaktion der Spurenelemente mit den eingeschreckten Leerstellen signifikant beeinflusst wird. Ziel ist es, ein fundamentales Verständnis der zugrundeliegenden Mechanismen zu erlangen. Durch den Einsatz vieler komplementärer Methoden wie Dynamischer Differenzkalorimetrie (DSC), in-situ Röntgenabsorptionsspektroskopie (XAFS) und in-situ Röntgenkleinwinkelstreuung (SAXS) kann ein umfassendes Bild der vorherrschenden Prozesse gewonnen werden. Als unterstützende Messmethoden dienen Transmissionselektronenmikroskopie (TEM) und Positronenlebensdauerspektroskopie (PALS) bzw. Dopplerspektroskopie (DBS). Um die Eigenschaften der Spurenelemente in Bezug auf Löslichkeit und Wechselwirkung mit Leerstellen in der Aluminiummatrix zu charakterisieren, werden zunächst binäre Aluminium- Spurenelement-Legierungen untersucht. Die ausgewählten Elemente (Bi, In, Pb, Sb, Sn) weisen alle eine, nach ab-intio Rechnungen, hohe Bindungsenergie zu Leerstellen auf. Man stellt nur bei In und Sn eine signifikante Bindung zu Leerstellen fest, da aufgrund der geringen Löslichkeiten von Bi, Pb und Sb keine für den Nachweis ausreichende Anzahl an Leerstellen gebunden werden. Die gelösten In- und Sn-Atome bilden mit den eingeschreckten Leerstellen sogenannte Komplexe, welche thermisch bis ca. 150 � C stabil sind. Die so konservierten Leerstellen können dann in einem komplexen Prozess durch Erwärmen der Legierung freigesetzt werden und tragen dadurch zur Diffusion bei. Grundsätzlich ist der Transport von Legierungsatomen in Aluminiumlegierungen weitestgehend durch die verfügbaren thermischen sowie eingeschreckten Leerstellen gesteuert. Durch die Bindung der Leerstellen an die Spurenelementatome in den ternären Al-Cu-X-Legierungen stehen nur noch wenige Leerstellen für den Cu-Transport zur Verfügung und man beobachtet eine Unterdrückung des Entmischungsprozesses bei Raumtemperatur. Lagert man die Legierungen bei erhöhter Temperatur (z.B. 150 � C) aus, werden Leerstellen aus den Spurenelement- Leerstellen-Komplexen freigesetzt, was zu einer Bildung der metastabilen q0-Phase bei deutlich erniedrigter Temperatur führt. Die kleinen und homogen verteilten Ausscheidungen steigern die Festigkeit der Legierung deutlich. Durch die Zugabe von Mg zum Al-Cu-Legierungssystem beschleunigt und verstärkt man die Entmischung der Legierungsatome bei Raumtemperatur. Ursache ist die rasche Bildung von thermisch stabilen Cu-Mg-Clustern, die für eine effektive Blockierung der Versetzungsbewegung im Kristallgitter – und damit für eine Erhöhung der Festigkeit – sorgen. Die Zugabe von In oder Sn zu einer Al-Cu-Mg-Legierung hat überraschenderweise keinen Einfluss auf die Ausscheidungsbildung bei Raumtemperatur. Gründe hierfür könnten zum einen in der durch Mg herabgesetzten Löslichkeit der In- bzw. Sn-Atome liegen. Zum anderen könnte die zahlreiche Bildung von Cu-Mg-Leerstellen-Komplexen in Konkurrenz zum Bindungseffekt der Spurenelementatome stehen. Auch bei erhöhter Temperatur lässt sich kein nennenswerter Einfluss von In oder Sn, beispielsweise durch bevorzugte Bildung der härtenden S-Phase, beobachten.
Hydrogel‐based drug depot formulations are of great interest for therapeutic applications. While the biological activity of such drug depots is often characterized well, the influence of incorporated drug or drug‐loaded micelles on the gelation properties of the hydrogel matrix is less investigated. However, the latter is of great importance from fundamental and application points of view as it informs on the physicochemical interactions of drugs and water‐swollen polymer networks and it determines injectability, depot stability, as well as drug‐release kinetics. Here, the impact of incorporated drug, neat polymer micelles, and drug‐loaded micelles on the viscoelastic properties of a cytocompatible hydrogel is investigated systematically. To challenge the hydrogel with regard to the desired application as injectable drug depot, curcumin (CUR) is chosen as a model compound due to its very low‐water solubility and limited stability. CUR is either directly solubilized by the hydrogel or pre‐incorporated into polymer micelles. Interference of CUR with the temperature‐induced gelation process can be suppressed by pre‐incorporation into polymer micelles forming a binary drug delivery system. Drug release from a collagen matrix is studied in a trans‐well setup. Compared to direct injection of drug formulations, the hydrogel‐based systems show improved and extended drug release over 10 weeks.
Adrenocortical carcinoma (ACC) is a rare tumor and prognosis is overall poor but heterogeneous. Mitotane (MT) has been used for treatment of ACC for decades, either alone or in combination with cytotoxic chemotherapy. Even at doses up to 6 g per day, more than half of the patients do not achieve targeted plasma concentration (14–20 mg L\(^{-1}\)) even after many months of treatment due to low water solubility, bioavailability, and unfavorable pharmacokinetic profile. Here a novel MT nanoformulation with very high MT concentrations in physiological aqueous media is reported. The MT‐loaded nanoformulations are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X‐ray diffraction which confirms the amorphous nature of the drug. The polymer itself does not show any cytotoxicity in adrenal and liver cell lines. By using the ACC model cell line NCI‐H295 both in monolayers and tumor cell spheroids, micellar MT is demonstrated to exhibit comparable efficacy to its ethanol solution. It is postulated that this formulation will be suitable for i.v. application and rapid attainment of therapeutic plasma concentrations. In conclusion, the micellar formulation is considered a promising tool to alleviate major drawbacks of current MT treatment while retaining bioactivity toward ACC in vitro.
In der vorliegenden Arbeit wird der Einfluss von Metallkomplexverbindungen auf der Basis von monotopen und ditopen Terpyridin-Liganden auf Zellen behandelt. Es können mehrere Möglichkeiten aufgezeigt werden, wie MEPE als kontrollierte Freisetzungssysteme für Zel-lanwendungen eingesetzt werden können. Es werden 2D-Beschichtungen, 3D-Knochenzemente und Terpyridin funktionalisierte Alginate hergestellt. Es ist möglich, definier-te, homogene Fe-MEPE Schichten auf Borosilikatglas mithilfe der Layer by Layer Technik und mittels Tauschbeschichtung abzuscheiden. Um die Oberfläche und somit die Freisetzung von Metallionen zu erhöhen, werden zusätzlich poröse SiO2-Schichten hergestellt, welche mit Fe-MEPE infiltriert werden. Um die Anwendbarkeit von Metallkomplexverbindungen auf der Basis von monotopen und ditopen Terpyridin-Liganden als Knochenersatzmaterial zu testen werden Hydroxylapatit Knochenzemente synthetisiert. Ziel ist eine retardierende Freisetzung der Metallionen ohne Burst Effekt und ohne den Verlust der Druckstabilitäten der HA Zemen-te. Die Funktionalisierung von Alginat mit 1-Amino-5-(2,2ʹ:6ʹ,2ʹʹ-terpyrid-4ʹ-yl-oxy)pentan resultiert in Hydrogelen, welche ein anderes Gelierverhalten als das unfunktionalisierte Alginat zeigen. Zudem ist es möglich mit Fe(II)- /Ca(II)-Salzmischungen Hydrogele auszubilden. Die funktionalisierten Alginate sind zudem bioaktiv.
Zum grundlegenden Verständnis der MEPE Zell Wechselwirkung werden zunächst Zytotoxo-zitätsuntersuchungen mittels WST-1 Test von L929 und C2C12-Zellen mit wässrigen M(II)MEPE Lösungen (Metallionen M= Fe(II), Co(II), Ni(II), Zn(II)) in einem Konzentrationsbe-reich von 1,56x10-11 bis 1,6x10-5 mol L-1 durchgeführt. Fe-MEPE zeigt im betrachteten Kon-zentrationsbereich keine zytotoxischen Eigenschaften auf die eingesetzte Fibroblastenzelllinie. Bei Konzentrationen über 1x10-6 mol L-1 Fe-MEPE sinkt die Mitochondrienaktivität der C2C12-Zellen auf 40%. Dagegen wirken Co- und Zn-MEPE ab einer Konzentration von 1x10-7 mol L-1 stark zytotoxisch auf L929 und C2C12-Zellen.
Um selektiv die Differenzierung von C2C12, MG63, humanen mesenchymalen Stammzellen (hMSCs) und humanen Endothelzellen anzuregen, werden die Zellen auf den hergestellten 2D Beschichtungen ausgesät. Es kann gezeigt werden, dass Fe-MEPE die Proliferation zu-gunsten der Stoffwechselaktivität von C2C12, MG63-Zellen und hMSCs hemmt. Bei weiterer Betrachtung der spezifischen myogenen Differenzierungsmarker der C2C12-Zellen bzw. der spezifischen Gene der osteogenen Differenzierung (Osteocalcin und ALP) mithilfe qRT-PCR können erhebliche Stimulierungen auf der mRNA Basis detektiert werden. Auch auf
enzymatischer Ebene zeigen Fe-MEPE modifizierte Oberflächen einen stimulierenden Effekt auf die Aktivität der alkalischen Phosphatase der MG63 Zelllinie und humaner mesenchyma-ler Stammzellen.
Somit kann eine Stimulierung der myogenen Differenzierung von C2C12-Zellen, sowie oste-ogenen Differenzierung von MG63-Zellen und hMSCs mittels Fe-MEPE beschichteten Ober-flächen innerhalb von drei Tagen nachgewiesen werden. Die Ergebnisse zeigen, dass Fe-MEPE funktionalisierte Oberflächen als innovative Scaffolds für die Behandlung von Kno-chendefekten eingesetzt werden können.
In vorliegender Dissertation wurde die Wirkweise von Kohlenstoffadditiven auf die verbesserten Ladeeigenschaften negativer Blei-Kohlenstoff Elektroden untersucht, wodurch ein wichtiger Beitrag für die Weiterentwicklung modernen Blei-Säure Batterien geliefert wurde. Neben der Aufklärung der elektrochemischen Prozesse an Kohlenstoffoberflächen, trug die Arbeit dazu bei, das Verständnis hinsichtlich der Rolle des Kohlenstoffs zur Erhöhung der dynamischen Stromaufnahme zu vertiefen und eine Messmethodik zur Bestimmung der Blei-Affinität von Graphitpulver zu entwickeln. Die wichtigsten Erkenntnisse dieser drei Themenfelder werden an dieser Stelle noch einmal zusammengefasst.
Elektrochemische Untersuchungen an amorphem Kohlenstoff: Um ein grundsätzliches Verständnis über die elektrochemische Aktivität von Kohlenstoff in verdünnter Schwefelsäure zu erhalten, wurden in Kapitel 4 die elektrochemisch ablaufenden Reaktion an der Phasengrenze Kohlenstoff/verdünnte Schwefelsäure bestimmt und diskutiert. Als Messmethode diente eine rotierende Scheibenelektrode aus glasartigem Kohlenstoff. Im Gegensatz zu inerten, metallischen Elektroden, zeigte sich an glasartigem Kohlenstoff ein deutlich komplexeres Verhalten. Die Kohlenstoffoberfläche verändert sich in Abhängigkeit des anliegenden Potentials signifikant. Für Potentiale über 1,0 V vs. RHE findet eine Oxidation des Kohlenstoffs statt und eine Zersetzung zu CO2. Diese Veränderungen haben wiederum Auswirkungen auf alle anderen elektrochemisch ablaufenden Reaktionen. So wurde durch umfassende zyklovoltammetrische Untersuchungen und mithilfe der differentiellen elektrochemischen Massenspektroskopie erstmals nachgewiesen, dass die Wasserstoffentwicklung durch kurzzeitige Oxidation des Kohlenstoffs signifikant unterdrückt werden kann. Zusätzliche Überspannungen von über einem Volt legen den Verdacht nahe, dass die Adsorption von Protonen verhindert wird und die Zersetzung des Elektrolyten erst durch Radikalbildung bei extremen Potentialen unter 2,0 V vs. RHE stattfindet. Zukünftig lässt sich dieser Effekt möglicherweise dazu einsetzen, die Nebenreaktion in Blei-Säure Batterien gezielt zu verringern .
Struktur-Eigenschafts-Beziehung zwischen externer Kohlenstoffoberfläche und dynamischer Stromaufnahme: Im Anschluss an die elektrochemische Analyse der reinen Kohlenstoffelektrode wurde in Kapitel 5 die Struktur-Eigenschafts-Beziehung von amorphem Kohlenstoff auf die elektrochemische Aktivität negativer Blei-Kohlenstoff-Elektroden systematisch untersucht. Hierzu wurden Elektroden aus sechs verschiedenen negativen Aktivmasserezepturen hergestellt, welche sich einzig im zugemischten Kohlenstoffadditiv unterschieden. Durch die Verwendung von Kohlenstoffpulver mit gezielt eingestellter spezifischer Oberfläche, konnte zum ersten Mal nachgewiesen werden, dass allein die externe Kohlenstoffoberfläche relevant für die Erhöhung der Aktivität der Elektrode ist. Zyklovoltammetrische Messungen zeigten, dass sowohl die Wasserstoffentwicklungsreaktion als auch die Doppelschichtkapazität durch eine zusätzlich in die Aktivmasse eingebrachte externe Kohlenstoffoberfläche verstärkt wird. Erstmals wurde ein linearer Zusammenhang zwischen Doppelschichtkapazität und dynamischer Stromaufnahme festgestellt, der belegt, dass die Erhöhung der dynamischen Stromaufnahme auf einen reinen Oberflächeneffekt zurückzuführen ist. Da sowohl der Strom durch die Wasserstoffentwicklung als auch durch die Ladung der Doppelschicht nicht ausreichen, um die erhöhte Stromaufnahme zu erkären, muss davon ausgegangen werden, dass die Bleisulfatreduktion durch den Kohlenstoff katalysiert wird. Erklärungsansätze sind eine vergrößerte aktive Oberfläche an Bleisulfat aufgrund einer eröhten Porosität und die Adsorption des oberflächenaktiven Ligninsulfonats auf der Kohlenstoffoberfläche anstelle der des Bleisulfats .
Blei-Affinität von Graphitpulver: Abschließend wurde in Kapitel 6 eine neue Messmethodik evaluiert, um die Elektrokristallisation von Blei auf Kohlenstoffadditiven zu charakterisieren. Hierfür wurde Bleimetall potentiostatisch aus wässriger Lösung auf graphitische Kohlenstoffelektroden abgeschieden und das Kristallwachstum und die Keimzahldichte anhand mikroskopischer Betrachtungen und Modellierung der Strom-Zeit-Transienten analysiert. Es konnte gezeigt werden, dass sich Blei in partikulärer Form an definierten Stellen der Graphitkristalle abscheidet und dass die Anzahl an Keimstellen durch die Höhe der Abscheidespannung variiert werden kann. In Anwesenheit von Ligninsulfonat wird das Keimwachstum verlangsamt und die ursprünglich instantane Keimbildung in eine progressive überführt. Ein für die Anwendung besonders relevantes Ergebnis lieferte der Vergleich zweier kommerzieller Graphitpulver, welche sowohl im Modellversuch, als auch als Additiv in negativen Bleielektroden eine signifikant unterschiedliche Keimzahldichte aufzeigten. Graphite mit einer hohen Kristallitgröße zeigen eine besonders hohe Bleiaffinität.
Polymer micelles are an attractive means to solubilize water insoluble compounds such as drugs. Drug loading, formulations stability and control over drug release are crucial factors for drug‐loaded polymer micelles. The interactions between the polymeric host and the guest molecules are considered critical to control these factors but typically barely understood. Here, we compare two isomeric polymer micelles, one of which enables ultra‐high curcumin loading exceeding 50 wt.%, while the other allows a drug loading of only 25 wt.%. In the low capacity micelles, steady‐state fluorescence revealed a very unusual feature of curcumin fluorescence, a high energy emission at 510 nm. Time‐resolved fluorescence upconversion showed that the fluorescence life time of the corresponding species is too short in the high‐capacity micelles, preventing an observable emission in steady‐state. Therefore, contrary to common perception, stronger interactions between host and guest can be detrimental to the drug loading in polymer micelles.
The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH\(_3\)), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mossbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing'' with the atomic order in iron oxide nanocrystals.
Lifetime techniques are applied to diverse fields of study including materials sciences, semiconductor physics, biology, molecular biophysics and photochemistry.
Here we present DDRS4PALS, a software for the acquisition and simulation of lifetime spectra using the DRS4 evaluation board (Paul Scherrer Institute, Switzerland) for time resolved measurements and digitization of detector output pulses. Artifact afflicted pulses can be corrected or rejected prior to the lifetime calculation to provide the generation of high-quality lifetime spectra, which are crucial for a profound analysis, i.e. the decomposition of the true information. Moreover, the pulses can be streamed on an (external) hard drive during the measurement and subsequently downloaded in the offline mode without being connected to the hardware. This allows the generation of various lifetime spectra at different configurations from one single measurement and, hence, a meaningful comparison in terms of analyzability and quality. Parallel processing and an integrated JavaScript based language provide convenient options to accelerate and automate time consuming processes such as lifetime spectra simulations.
Structure-property relationships in poly(2-oxazoline)/poly(2-oxazine) based drug formulations
(2020)
According to estimates, more than 40% of all new chemical entities developed in pharmaceutical industry are practically insoluble in water. Naturally, the demand for excipients which increase the water solubility and thus, the bioavailability of such hydrophobic drugs is enormous. Poly(2-oxazoline)s (POx) are currently intensively discussed as highly versatile class of biomaterials. Although selected POx based micellar drug formulations exhibit extraordinarily high drug loadings > 50 wt.% enabling high anti-tumor efficacies in vivo, the formulation of other hydrophobic compounds has failed. This casts doubt on the general understanding in which a hydrophobic active pharmaceutical ingredient is dissolved rather unspecifically in the hydrophobic core of the micelles following the fundamental concept of “like dissolves like”. Therefore, a closer look at the interactions between all components within a formulation becomes increasingly important. To do so, a large vehicle platform was synthesized, loaded with various hydrophobic drugs of different structure, and the formulations subsequently characterized with conventional and less conventional techniques. The obtained in-depth insights helped to develop a more thorough understanding about the interaction of polymer and incorporated API finally revealing morphologies deviating from a classical core/shell structure. During these studies, the scarcely investigated polymer class of poly(2-oxazine)s (POzi) was found as promising drug-delivery vehicle for hydrophobic drugs. Apart from this fundamental research, the anti-tumor efficacy of the two APIs curcumin and atorvastatin has been studied in more detail. To increase the scope of POx and POzi based formulations designed for intravenous administration, a curcumin loaded hydrogel was developed as injectable drug-depot.