Lehrstuhl für Molekulare Psychiatrie
Refine
Has Fulltext
- yes (34)
Is part of the Bibliography
- yes (34)
Year of publication
Document Type
- Journal article (28)
- Doctoral Thesis (6)
Keywords
- ADHD (7)
- mice (5)
- Serotonin (3)
- prefrontal cortex (3)
- psychiatric disorders (3)
- serotonin (3)
- CDH13 (2)
- Cadherine (2)
- Genetics (2)
- Hippocampus (2)
Institute
- Lehrstuhl für Molekulare Psychiatrie (34)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (8)
- Graduate School of Life Sciences (5)
- Institut für Anatomie und Zellbiologie (3)
- Institut für Humangenetik (2)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (2)
- Rudolf-Virchow-Zentrum (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Institut für Experimentelle Biomedizin (1)
- Institut für Klinische Neurobiologie (1)
Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders.
A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out (St3gal5\(^{−/−}\)) mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids. Here, we sought to investigate the possibility that St3gal5\(^{−/−}\) mice might exhibit attention-deficit/hyperactivity disorder (ADHD)-like behaviours. In addition, we evaluated potential metabolic and electroencephalogram (EEG) abnormalities. St3gal5\(^{−/−}\) mice were subjected to behavioural testing, glucose tolerance tests, and the levels of expression of brain and peripheral A and B isoforms of the insulin receptor (IR) were measured. We found that St3gal5\(^{−/−}\) mice exhibit locomotor hyperactivity, impulsivity, neophobia, and anxiety-like behavior. The genotype also altered blood glucose levels and glucose tolerance. A sex bias was consistently found in relation to body mass and peripheral IR expression. Analysis of the EEG revealed an increase in amplitude in St3gal5\(^{−/−}\) mice. Together, St3gal5\(^{−/−}\) mice exhibit ADHD-like behaviours, altered metabolic and EEG measures providing a useful platform for better understanding of the contribution of brain gangliosides to ADHD and associated comorbidities.
Background
While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak.
Methods
The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for “sickness” behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS).
Results
LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects.
Conclusions
Herbal IP-therapy decreases inflammation and, partly, “sickness behavior,” suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.
The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{−/−}\)) mice. In heterozygous male mice (Tph2\(^{+/−}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/−}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/−}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2\(^{+/−}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.
Cadherin-13 (CDH13) is a member of the cadherin superfamily that lacks the typical transmembrane domain for classical cadherins and is instead attached to the cell membrane with a GPI-anchor. Over the years, numerous genome-wide association (GWA) studies have identified CDH13 as a risk factor for neurodevelopmental disorders, including attention- deficit/hyperactivity disorder (ADHD) and autism spectrum disorder. Further evidence using cultured cells and animal models has shown that CDH13 plays important roles in cell migration, neurite outgrowth and synaptic function of the central nervous system. Research in our laboratory demonstrated that the CDH13 deficiency resulted in increased cell density of serotonergic neurons of the dorsal raphe (DR) in developing and mature mouse brains as well as serotonergic hyperinnervation in the developing prefrontal cortex, one of the target areas of DR serotonergic neurons. In this study, the role of CDH13 was further explored using constitutive and serotonergic system-specific CDH13-deficient mouse models. Within the adult DR structure, the increased density of DR serotonergic neurons was found to be topographically restricted to the ventral and lateral-wing, but not dorsal, clusters of DR. Furthermore, serotonergic hyperinnervation was observed in the target region of DR serotonergic projection neurons in the lateral wings. Unexpectedly, these alterations were not observed in postnatal day 14 brains of CDH13-deficient mice. Additionally, behavioral assessments revealed cognitive deficits in terms of compromised learning and memory ability as well as impulsive-like behaviors in CDH13-deficient mice, indicating that the absence of CDH13 in the serotonergic system alone was sufficient to impact cognitive functions and behavioral competency. Lastly, in order to examine the organization of serotonergic circuitries systematically and to tackle limitations of conventional immunofluorescence, a pipeline of the whole-mount immunostaining in combination with the iDISCO+ based rapid tissue clearing techniques was established. This will facilitate future research of brain neurotransmitter systems at circuitry and/or whole-brain levels and provide an excellent alternative for visualizing detailed and comprehensive information about a biological system in its original space. In summary, this study provided new evidence of CDH13’s contribution to proper brain development and cognitive function in mice, thereby offering insights into further advancement of therapeutic approaches for neurodevelopmental disorders.
In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n = 93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n = 98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD.
Recent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). FOXP2 function is suggested to be involved in GABAergic signalling and numerous studies demonstrate that GABAergic function is altered in NDDs, thus disrupting the excitation/inhibition balance. Interestingly, GABAergic signalling components, including glutamate-decarboxylase 1 (Gad1) and GABA receptors, are putative transcriptional targets of FOXP2. However, the specific role of FOXP2 in the pathomechanism of NDDs remains elusive. Here we test the hypothesis that Foxp2 affects behavioural dimensions via GABAergic signalling using zebrafish as model organism. We demonstrate that foxp2 is expressed by a subset of GABAergic neurons located in brain regions involved in motor functions, including the subpallium, posterior tuberculum, thalamus and medulla oblongata. Using CRISPR/Cas9 gene-editing we generated a novel foxp2 zebrafish loss-of-function mutant that exhibits increased locomotor activity. Further, genetic and/or pharmacological disruption of Gad1 or GABA-A receptors causes increased locomotor activity, resembling the phenotype of foxp2 mutants. Application of muscimol, a GABA-A receptor agonist, rescues the hyperactive phenotype induced by the foxp2 loss-of-function. By reverse translation of the therapeutic effect on hyperactive behaviour exerted by methylphenidate, we note that application of methylphenidate evokes different responses in wildtype compared to foxp2 or gad1b loss-of-function animals. Together, our findings support the hypothesis that foxp2 regulates locomotor activity via GABAergic signalling. This provides one targetable mechanism, which may contribute to behavioural phenotypes commonly observed in NDDs.
Serotonin deficiency induced after brain maturation rescues consequences of early life adversity
(2021)
Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKOxMS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.
Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity.
Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of “emotional” ultrasound stress (US), mice were subjected to ultrasound frequencies of 16–20 kHz, mimicking rodent sounds of anxiety/despair and “neutral” frequencies of 25–45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.