Deutsches Zentrum für Herzinsuffizienz (DZHI)
Refine
Is part of the Bibliography
- yes (126)
Year of publication
Document Type
- Journal article (102)
- Doctoral Thesis (23)
- Preprint (1)
Keywords
- heart failure (10)
- echocardiography (9)
- Herzinsuffizienz (7)
- cardiomyopathy (6)
- magnetic resonance imaging (6)
- prognosis (5)
- acute heart failure (4)
- cardiovascular genetics (4)
- ischemic stroke (4)
- mitochondria (4)
Institute
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (126)
- Medizinische Klinik und Poliklinik I (48)
- Institut für Klinische Epidemiologie und Biometrie (20)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (14)
- Klinik und Poliklinik für Nuklearmedizin (12)
- Neurologische Klinik und Poliklinik (11)
- Graduate School of Life Sciences (6)
- Institut für Humangenetik (6)
- Physikalisches Institut (6)
- Institut für Pharmakologie und Toxikologie (5)
Sonstige beteiligte Institutionen
- Clinical Trial Center (CTC) / Zentrale für Klinische Studien Würzburg (ZKSW) (2)
- Center for Interdisciplinary Clinical Research, Würzburg University, Würzburg, Germany (1)
- Datenintegrationszentrum Würzburg (DIZ) (1)
- Department of Medicinal Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria (1)
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria (1)
- Interdisziplinäre Biomaterial- und Datenbank Würzburg (ibdw) (1)
- Interdisziplinäre Zentrum für Klinische Forschung (IZKF) (1)
- Servicezentrum Medizin-Informatik (1)
- Universitätsklinikum Würzburg (UKW) (1)
Langkettige Acylcarnitine wie Oleoylcarnitn sind arrhythmogen wirkende Metaboliten, deren Rolle im Zusammenhang mit Vorhofflimmern noch unvollständig erforscht sind. Ziel dieser Dissertation war es, dazu beizutragen, den Einfluss langkettiger Acylcarnitine auf den kardialen Metabolismus besser zu verstehen. Dabei wurden für die Daten aktuelle Studien genutzt, welche sich mit dem Einfluss von Acylcarnitinen auf kardiales Gewebe bzw. kardial vorerkrankten Patienten beschäftigten. Hierzu zählten unter anderem die Daten einer Kohorten-Studie mit 9660 Probanden von Professor Dr. rer. nat. Tanja Zeller in Hamburg. Diese Daten zeigten, dass Patienten mit Vorhofflimmern erhöhte Acylcarnitin-Blutplasma-Werte aufwiesen. Bei den Acylcarnitinen handelt es sich um Fettsäuren mit 18 Kohlenstoff- (C-) Atomen und einer Doppelbindung. Der Hauptvertreter dieser Fettsäuren ist Oleoylcarnitin. Dass Oleoylcarnitin eine besondere Rolle bei der Entwicklung von Arrhythmien zufällt, konnten andere Studien bestätigen. Auf Grund dieser Grundlage wurden initiale Experimente durchgeführt. Für alle Experimente wurde Oleoylcarnitin mit 18 C-Atomen und einer Doppelbindung bzw. Stearoylcarnitin mit 18 C-Atomen ohne Doppelbindung in verschiedenen Konzentrationen verwendet. Um den Einfluss der Acylcarnitine auf den kardialen Metabolismus bestimmen zu können, wurden aus C57BL/6N Mäusen kardiale Mitochondrien isoliert und deren Respiration (Sauerstoffverbrauch) als Ausdruck der metabolischen Leistung und damit der Vitalität der Mitochondrien mit Hilfe der Clark Elektrode bestimmt. Die Mitochondrien wurden mit verschiedenen Substraten, d.h., mit Pyruvat/Malat (Komplex 1 Substrat), Glutamat/Malat (Komplex 1 Substrat nach Anaplerose) oder Palmitoyl-CoA (β-Oxidations-Substrat) und unterschiedlichen Konzentrationen von Acylcarnitinen behandelt und die Respiration gemessen.
Im Gegensatz zur Pyruvat/Malat-gestützten Respiration, die durch den Einfluss von hohen (bis 25 µM) Oleoylcarnitin Konzentrationen vermindert bis inhibiert wurde, steigerte zumindest zeitweise Oleoylcarnitin die PalmitoylCoA- sowie die Glutamat/Malat-gestützte Respiration. Wobei kritisch zu betrachten ist, dass die Respirationslevel einer Glutamat/Malat-gestützten Respiration insgesamt auf einem niedrigeren Level sind als mit Pyruvat/Malat als Substrat.
Der inhibierende Acylcarnitin-Effekt auf die Pyruvat/Malat-Atmung konnte nicht mit Etomoxir, einem Inhibitor der Carnitin Palmitoyl-Transferase 1 (CPT1), beeinflusst werden, aber als CPT1-Inhibitor konnte Etomoxir die auf PalmitoylCoA gestützte Respiration konzentrationsabhängig reduzieren. Die inhibierenden Effekte der Acylcarnitine waren zudem reversibel und verursachten somit keine irreversiblen Schäden an den Mitochondrien. Es wird geschlussfolgert, dass die hier getesteten Oleoyl- und Stearoylcarnitine eine regulierende Funktion auf die flexible Substratverarbeitung des Herzens haben. Sie können den Abbau der Glycolyse-Endprodukte inhibieren, gleichzeitig die Fettsäure-Respiration unterstützen und somit mit einem Substratswitch den Stoffwechsel der Mitochondrien beeinflussen. Gleichzeitig könnte es bei Situationen mit gestörtem oxidativem Stoffwechsel, z.B. während Myokardischämie zur Überlastung des Metabolismus oder sogar Blockade der Respiration kommen. Diese Respirationsblockade könnte ein Auslöser für Arrhythmien und Vorhofflimmern sein.
Frequenzabhängigkeit der IP3-induzierten Calciumregulation in murinen ventrikulären Kardiomyozyten
(2023)
In Kardiomyozyten ist Calcium (Ca2+) ein wichtiges Signalmolekül und eine präzise Regulation der Ca2+ Konzentration in den Zellkompartimenten erforderlich. Ca2+ wird Angiotensin II-induziert und vom Botenstoff IP3 vermittelt aus IP3 Rezeptoren des Sarkoplasmatischen Retikulum (SR) freigesetzt, was zur mitochondrialen Ca2+ Aufnahme führt. Diese Kommunikationswege zwischen SR und Mitochondrium sind u.a. bei der Herzinsuffizienz durch pathologische Umbauprozesse gestört. Zudem zirkulieren bei Herzinsuffizienz vermehrt Hormone wie AngII, welches u.a. die intrazelluläre IP3 Konzentration steigert und als Hypertrophie Signal wirkt. Dieser Arbeit geht die Vermutung voraus, dass eine gestörte mitochondriale Ca2+ Aufnahme durch Veränderung des nukleären Ca2+ Transienten die hypertrophe Genexpression beeinflussen kann. Es wurde an ventrikulären Kardiomyozyten von adulten Mäusen mit kardiospezifischem MCU Knock out oder MCU Wildtyp untersucht, wie sich Ca2+ Transienten in Zytosol und Nukleus bei AngII-Stimulation und Störung der mitochondrialen Ca2+ Aufnahme durch Blockade des mRyR1 oder des MCU verändern. Zum Vergleich wurde der Effekt des β adrenerg vermittelten, IP3 unabhängigen Ca2+ Anstiegs beobachtet. Zur Untersuchung der Frequenzabhängigkeit der Effekte wurde die elektrische Stimulation wurde variiert. Die Arbeit zeigt, dass sich die Blockade der mitochondrialen Ca2+ Aufnahme unterschiedlich auf den nukleären Ca2+ Transienten auswirkt: Bei AngII-Stimulation kam es in Folge der Blockade des mRyR1, nicht aber des MCU, zur Steigerung des nukleären Ca2+ Transienten. Dieser Effekt war bei 1 Hz Stimulationsfrequenz, nicht aber nach einer Steigerung auf 4 Hz zu beobachten. Bei β adrenerger Stimulation hingegen veränderte die Blockade des MCU oder des mRyR1 die Ca2+ Transienten im Kern nicht signifikant. Die Arbeit verdeutlicht die Bedeutung der IP3 vermittelten Ca2+ Freisetzung für die Kontrolle der Ca2+ Konzentrationen in unterschiedlichen zellulären Kompartimenten.
Purpose
To fully automatically derive quantitative parameters from late gadolinium enhancement (LGE) cardiac MR (CMR) in patients with myocardial infarction and to investigate if phase sensitive or magnitude reconstructions or a combination of both results in best segmentation accuracy.
Methods
In this retrospective single center study, a convolutional neural network with a U-Net architecture with a self-configuring framework (“nnU-net”) was trained for segmentation of left ventricular myocardium and infarct zone in LGE-CMR. A database of 170 examinations from 78 patients with history of myocardial infarction was assembled. Separate fitting of the model was performed, using phase sensitive inversion recovery, the magnitude reconstruction or both contrasts as input channels.
Manual labelling served as ground truth. In a subset of 10 patients, the performance of the trained models was evaluated and quantitatively compared by determination of the Sørensen-Dice similarity coefficient (DSC) and volumes of the infarct zone compared with the manual ground truth using Pearson’s r correlation and Bland-Altman analysis.
Results
The model achieved high similarity coefficients for myocardium and scar tissue. No significant difference was observed between using PSIR, magnitude reconstruction or both contrasts as input (PSIR and MAG; mean DSC: 0.83 ± 0.03 for myocardium and 0.72 ± 0.08 for scars). A strong correlation for volumes of infarct zone was observed between manual and model-based approach (r = 0.96), with a significant underestimation of the volumes obtained from the neural network.
Conclusion
The self-configuring nnU-net achieves predictions with strong agreement compared to manual segmentation, proving the potential as a promising tool to provide fully automatic quantitative evaluation of LGE-CMR.
Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III\(_2\), III\(_2\) + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.
LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (I\(_f\)) density; (2) prolonged action potential duration and increased L-type Ca\(^{2+}\) current (I\(_{Ca,L}\)) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to β-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na\(^+\)/Ca\(^{2+}\) exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy.
About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2–c.378+1G>T) in the first patient and a nonsense mutation (DSG2–p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.
Despite important advances in diagnosis and treatment, heart failure (HF) remains a syndrome with substantial morbidity and dismal prognosis. Although implementation and optimization of existing technologies and drugs may lead to better management of HF, new or alternative strategies are desirable. In this regard, basic science is expected to give fundamental inputs, by expanding the knowledge of the pathways underlying HF development and progression, identifying approaches that may improve HF detection and prognostic stratification, and finding novel treatments. Here, we discuss recent basic science insights that encompass major areas of translational research in HF and have high potential clinical impact.
Die arrhythmogene Kardiomyopathie (ACM) ist eine Herzmuskelerkrankung, die durch den fett- und bindegewebigen Umbau von Herzmuskelgewebe charakterisiert ist. Klinisch treten häufig ventrikuläre Herzrhythmusstörungen auf, teilweise bis hin zum plötzlichen Herztod. ACM ist eine genetisch bedingte Erkrankung, die durch Mutationen in desmosomalen Proteinen, wie Plakophilin-2 (PKP2) und Desmoglein-2 (DSG2), entsteht. Die molekularen Mechanismen sind nur teilweise verstanden und aktuell gibt es keine spezifischen Therapiemöglichkeiten.
Ziel der Arbeit war es, die therapeutische Wirkung eines DSG2-spezifischen Tandem-Peptids (TP) durch desmosomale Stabilisierung an humanen Kardiomyozyten (KM) in einem ACM-Modell zu untersuchen. KM wurden aus humanen induzierten pluripotenten Stammzellen (hiPS) einer PKP2-Knockout- (PKP2-KO), DSG2-Knockout- (DSG2-KO) und deren isogener Kontrollzelllinie differenziert. Zunächst wurden verschiedene Methoden der beschleunigten Zellreifung getestet. Dann wurden die PKP2- und DSG2-KO-KM anhand von intrazellulären Kalzium-Messungen und Arrhythmie-Analysen phänotypisch charakterisiert. Letztlich wurde die Wirkung des TPs, das an die DSG2 der geschwächten Zellbindungen von PKP2-KO-KM binden sollte, im Vergleich zu entsprechenden Kontrollen untersucht.
Die Ergebnisse zeigen, dass mit der Matrigel-Mattress-Kultivierung und einer Hormonbehandlung elektrisch stimulierbare hiPS-KM mit reifen Eigenschaften hergestellt werden konnten. Der Phänotyp der mutationstragenden PKP2-KO-KM und DSG2-KO-KM zeichnete sich durch erhöhte diastolische Kalzium-Konzentrationen und erniedrigte Kalzium-Amplituden sowie durch beschleunigte Kalzium-Kinetik im Sinne der Relaxationszeiten aus. Weiterhin war bei den PKP2-KO-KM die Häufigkeit der Arrhythmien erhöht, die unter beta-adrenerger Stimulation nachließen. Insgesamt konnte keine eindeutige Wirkung des TPs im ACM-Modell gezeigt werden. Das TP hatte nur auf die diastolischen Kalzium-Konzentrationen der PKP2-KO-KM einen therapeutischen Einfluss, allerdings auch auf DSG2-KO-KM, weshalb der Hinweis auf eine fehlende DSG2-Spezifität des TPs entstand.
Schlussfolgernd wurde bestätigt, dass sich reife hiPS-KM mit genetischen Veränderungen als Modell zur Untersuchung der Kalziumhomöostase und von Arrhythmien bei der ACM eignen. Sie können grundsätzlich zum Test von therapeutischen Anwendungen genutzt werden. Die Wirksamkeit und Spezifität des getesteten TPs sollte zukünftig weiter überprüft werden.
Herzinsuffizienz ist eines der häufigsten Krankheitsbilder, das trotz großer therapeutischer Fortschritte noch immer mit einer eingeschränkten Lebensqualität und schlechten Prognose einhergeht. Eine akute Dekompensation ist in Deutschland der häufigste Grund für einen Krankenhausaufenthalt, wobei sich die Prognose mit jeder Hospitalisierung zusätzlich verschlechtert.
Pathophysiologisch besteht ein enger Zusammenhang zwischen kardialer und renaler Funktion. Bei einer chronischen Herzinsuffizienz liegt häufig zusätzlich eine CKD vor und im Rahmen einer akuten kardialen Dekompensation kommt es häufig auch zu einer akuten Verschlechterung der Nierenfunktion.
Das AHF-Register verfolgte als prospektive Kohortenstudie einen umfassenden Forschungsansatz: Ätiologie, klinische Merkmale und medizinische Bedürfnisse sowie Kosten und Prognose sollten bei Patient:innen während und nach Krankenhausaufenthalt aufgrund akuter Herzinsuffizienz untersucht werden.
Über ca. 6 Jahre wurden insgesamt 1000 Patient:innen eingeschlossen, die im Vergleich zu anderen AHF- Studienkollektiven älter waren, mehr Komorbiditäten aufwiesen und häufiger in die Gruppe der HFpEF fielen. Über drei Viertel der Patient:innen hatten eine vorbekannte chronische Herzinsuffizienz, nur bei ca. 22% erfolgte die Erstdiagnose einer akuten Herzinsuffizienz.
Ein WRF während der Indexhospitalisierung trat im untersuchten Kollektiv bei über einem Drittel der Patient:innen auf und damit häufiger als in vergleichbaren Studien (Inzidenz hier ca. 25%).
Dabei zeigten sich nur geringfügige Unterschiede zwischen der Definition eines WRF über einen absoluten Kreatinin-Anstieg (WRF-Crea) oder eine relative eGFR-Abnahme (WRF-GFR).
Als wichtige Risikofaktoren für ein WRF zeigten sich ein höheres Lebensalter, Komorbiditäten wie eine KHK oder CKD sowie die Höhe der Nierenfunktionswerte bei Aufnahme. Sowohl bei WRF-Crea als auch bei WRF-GFR kam es zu einer relevanten Verlängerung der Index-Hospitalisierungsdauer um jeweils drei Tage. Nur für WRF-Crea jedoch ließ sich ein 33% höheres 6-Monats-Rehospitalisierungsrisiko nachweisen, das aber in einer multivariablen Analyse nicht bestätigt werden konnte. Dagegen zeigten sich in multivariablen Modellen vor allem die Nierenfunktionsparameter selbst bei Aufnahme und Entlassung als starke Prädiktoren für eine erhöhte Mortalität und ein erhöhtes Rehospitalisierungsrisiko.
Wichtig erscheint im Hinblick auf die Prognose die Unterscheidung von Echtem WRF und Pseudo-WRF. Das Mortalitätsrisiko war bei Echtem WRF bis zu 4,4-fach, das Rehospitalisierungsrisiko bis zu 2,5-fach erhöht.
Ziel sollte sein, diese beiden pathophysiologisch und prognostisch unterschiedlichen Entitäten anhand von klinischen oder laborchemischen Markern sicher differenzieren zu können. Ein Konzept für die Betreuung von Patient:innen mit Echtem WRF, z. B. im Rahmen einer „Decongestion Stewardship“ (in Analogie zum Antibiotic Stewardship) mit engmaschigen Therapiekontrollen und -anpassungen könnte erarbeitet werden, um die Prognose dieser besonders gefährdeten Gruppe zu verbessern.
Risk prediction in patients with heart failure (HF) is essential to improve the tailoring of preventive, diagnostic, and therapeutic strategies for the individual patient, and effectively use health care resources. Risk scores derived from controlled clinical studies can be used to calculate the risk of mortality and HF hospitalizations. However, these scores are poorly implemented into routine care, predominantly because their calculation requires considerable efforts in practice and necessary data often are not available in an interoperable format. In this work, we demonstrate the feasibility of a multi-site solution to derive and calculate two exemplary HF scores from clinical routine data (MAGGIC score with six continuous and eight categorical variables; Barcelona Bio-HF score with five continuous and six categorical variables). Within HiGHmed, a German Medical Informatics Initiative consortium, we implemented an interoperable solution, collecting a harmonized HF-phenotypic core data set (CDS) within the openEHR framework. Our approach minimizes the need for manual data entry by automatically retrieving data from primary systems. We show, across five participating medical centers, that the implemented structures to execute dedicated data queries, followed by harmonized data processing and score calculation, work well in practice. In summary, we demonstrated the feasibility of clinical routine data usage across multiple partner sites to compute HF risk scores. This solution can be extended to a large spectrum of applications in clinical care.