526 Mathematische Geografie
Refine
Has Fulltext
- yes (91)
Is part of the Bibliography
- yes (91)
Year of publication
Document Type
- Journal article (88)
- Doctoral Thesis (3)
Keywords
- remote sensing (18)
- MODIS (8)
- time series (8)
- Google Earth Engine (7)
- Sentinel-2 (7)
- machine learning (6)
- Earth observation (5)
- Landsat (5)
- NDVI (5)
- SAR (5)
Institute
A first assessment of canopy cover loss in Germany's forests after the 2018–2020 drought years
(2022)
Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.
The analysis of the Earth system and interactions among its spheres is increasingly important to improve the understanding of global environmental change. In this regard, Earth observation (EO) is a valuable tool for monitoring of long term changes over the land surface and its features. Although investigations commonly study environmental change by means of a single EO-based land surface variable, a joint exploitation of multivariate land surface variables covering several spheres is still rarely performed. In this regard, we present a novel methodological framework for both, the automated processing of multisource time series to generate a unified multivariate feature space, as well as the application of statistical time series analysis techniques to quantify land surface change and driving variables. In particular, we unify multivariate time series over the last two decades including vegetation greenness, surface water area, snow cover area, and climatic, as well as hydrological variables. Furthermore, the statistical time series analyses include quantification of trends, changes in seasonality, and evaluation of drivers using the recently proposed causal discovery algorithm Peter and Clark Momentary Conditional Independence (PCMCI). We demonstrate the functionality of our methodological framework using Indo-Gangetic river basins in South Asia as a case study. The time series analyses reveal increasing trends in vegetation greenness being largely dependent on water availability, decreasing trends in snow cover area being mostly negatively coupled to temperature, and trends of surface water area to be spatially heterogeneous and linked to various driving variables. Overall, the obtained results highlight the value and suitability of this methodological framework with respect to global climate change research, enabling multivariate time series preparation, derivation of detailed information on significant trends and seasonality, as well as detection of causal links with minimal user intervention. This study is the first to use multivariate time series including several EO-based variables to analyze land surface dynamics over the last two decades using the causal discovery algorithm PCMCI.
Intercomparison of satellite-derived vegetation phenology is scarce in remote locations because of the limited coverage area and low temporal resolution of field observations. By their reliable near-ground observations and high-frequency data collection, PhenoCams can be a robust tool for intercomparison of land surface phenology derived from satellites. This study aims to investigate the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology by comparing fortnightly the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) extracted using the Google Earth Engine (GEE) platform with the daily PhenoCam-based green chromatic coordinate (GCC) index. Data were collected from 2016 to 2019 by PhenoCams installed in six mature stands along a latitudinal gradient of the boreal forests of Quebec, Canada. All time series were fitted by double-logistic functions, and the estimated parameters were compared between NDVI, EVI, and GCC. The onset of GCC occurred in the second week of May, whereas the ending of GCC occurred in the last week of September. We demonstrated that GCC was more correlated with EVI (R\(^2\) from 0.66 to 0.85) than NDVI (R\(^2\) from 0.52 to 0.68). In addition, the onset and ending of phenology were shown to differ by 3.5 and 5.4 days between EVI and GCC, respectively. Larger differences were detected between NDVI and GCC, 17.05 and 26.89 days for the onset and ending, respectively. EVI showed better estimations of the phenological dates than NDVI. This better performance is explained by the higher spectral sensitivity of EVI for multiple canopy leaf layers due to the presence of an additional blue band and an optimized soil factor value. Our study demonstrates that the phenological observations derived from PhenoCam are comparable with the EVI index. We conclude that EVI is more suitable than NDVI to assess phenology in evergreen species of the northern boreal region, where PhenoCam data are not available. The EVI index could be used as a reliable proxy of GCC for monitoring evergreen species phenology in areas with reduced access, or where repeated data collection from remote areas are logistically difficult due to the extreme weather.
Freely available satellite data at Google Earth Engine (GEE) cloud platform enables vegetation phenology analysis across different scales very efficiently. We evaluated seasonal and annual phenology of the old-growth Hyrcanian forests (HF) of northern Iran covering an area of ca. 1.9 million ha, and also focused on 15 UNESCO World Heritage Sites. We extracted bi-weekly MODIS-NDVI between 2017 and 2020 in GEE, which was used to identify the range of NDVI between two temporal stages. Then, changes in phenology and growth were analyzed by Sentinel 2-derived Temporal Normalized Phenology Index. We modelled between seasonal phenology and growth by additionally considering elevation, surface temperature, and monthly precipitation. Results indicated considerable difference in onset of forests along the longitudinal gradient of the HF. Faster growth was observed in low- and uplands of the western zone, whereas it was lower in both the mid-elevations and the western outskirts. Longitudinal range was a major driver of vegetation growth, to which environmental factors also differently but significantly contributed (p < 0.0001) along the west-east gradient. Our study developed at GEE provides a benchmark to examine the effects of environmental parameters on the vegetation growth of HF, which cover mountainous areas with partly no or limited accessibility.
Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.
Land Surface Temperature (LST) is an important parameter for tracing the impact of changing climatic conditions on our environment. Describing the interface between long- and shortwave radiation fluxes, as well as between turbulent heat fluxes and the ground heat flux, LST plays a crucial role in the global heat balance. Satellite-derived LST is an indispensable tool for monitoring these changes consistently over large areas and for long time periods. Data from the AVHRR (Advanced Very High-Resolution Radiometer) sensors have been available since the early 1980s. In the TIMELINE project, LST is derived for the entire operating period of AVHRR sensors over Europe at a 1 km spatial resolution. In this study, we present the validation results for the TIMELINE AVHRR daytime LST. The validation approach consists of an assessment of the temporal consistency of the AVHRR LST time series, an inter-comparison between AVHRR LST and in situ LST, and a comparison of the AVHRR LST product with concurrent MODIS (Moderate Resolution Imaging Spectroradiometer) LST. The results indicate the successful derivation of stable LST time series from multi-decadal AVHRR data. The validation results were investigated regarding different LST, TCWV and VA, as well as land cover classes. The comparisons between the TIMELINE LST product and the reference datasets show seasonal and land cover-related patterns. The LST level was found to be the most determinative factor of the error. On average, an absolute deviation of the AVHRR LST by 1.83 K from in situ LST, as well as a difference of 2.34 K from the MODIS product, was observed.
Coal mining, an important human activity, disturbs soil organic carbon (SOC) accumulation and decomposition, eventually affecting terrestrial carbon cycling and the sustainability of human society. However, changes of SOC content and their relation with influential factors in coal mining areas remained unclear. In the study, predictive models of SOC content were developed based on field sampling and Landsat images for different land-use types (grassland, forest, farmland, and bare land) of the largest coal mining area in China (i.e., Shendong). The established models were employed to estimate SOC content across the Shendong mining area during 1990–2020, followed by an investigation into the impacts of climate change and human disturbance on SOC content by a Geo-detector. Results showed that the models produced satisfactory results (R\(^2\) > 0.69, p < 0.05), demonstrating that SOC content over a large coal mining area can be effectively assessed using remote sensing techniques. Results revealed that average SOC content in the study area rose from 5.67 gC·kg\(^{−1}\) in 1990 to 9.23 gC·kg\(^{−1}\) in 2010 and then declined to 5.31 gC·Kg\(^{−1}\) in 2020. This could be attributed to the interaction between the disturbance of soil caused by coal mining and the improvement of eco-environment by land reclamation. Spatially, the SOC content of farmland was the highest, followed by grassland, and that of bare land was the lowest. SOC accumulation was inhibited by coal mining activities, with the effect of high-intensity mining being lower than that of moderate- and low-intensity mining activities. Land use was found to be the strongest individual influencing factor for SOC content changes, while the interaction between vegetation coverage and precipitation exerted the most significant influence on the variability of SOC content. Furthermore, the influence of mining intensity combined with precipitation was 10 times higher than that of mining intensity alone.
Vietnam's 3260 km coastline is densely populated, experiences rapid urban and economic growth, and faces at the same time a high risk of coastal hazards. Satellite archives provide a free and powerful opportunity for long-term area-wide monitoring of the coastal zone. This paper presents an automated analysis of coastline dynamics from 1986 to 2021 for Vietnam's entire coastal zone using the Landsat archive. The proposed method is implemented within the cloud-computing platform Google Earth Engine to only involve publicly and globally available datasets and tools. We generated annual coastline composites representing the mean-high water level and extracted sub-pixel coastlines. We further quantified coastline change rates along shore-perpendicular transects, revealing that half of Vietnam's coast did not experience significant change, while the remaining half is classified as erosional (27.7%) and accretional (27.1%). A hotspot analysis shows that coastal segments with the highest change rates are concentrated in the low-lying deltas of the Mekong River in the south and the Red River in the north. Hotspots with the highest accretion rates of up to +47 m/year are mainly associated with the construction of artificial coastlines, while hotspots with the highest erosion rates of −28 m/year may be related to natural sediment redistribution and human activity.
An increasing amount of Brazilian rainforest is being lost or degraded for various reasons, both anthropogenic and natural, leading to a loss of biodiversity and further global consequences. Especially in the Brazilian state of Mato Grosso, soy production and large-scale cattle farms led to extensive losses of rainforest in recent years. We used a spectral mixture approach followed by a decision tree classification based on more than 30 years of Landsat data to quantify these losses. Research has shown that current methods for assessing forest degradation are lacking accuracy. Therefore, we generated classifications to determine land cover changes for each year, focusing on both cleared and degraded forest land. The analyses showed a decrease in forest area in Mato Grosso by 28.8% between 1986 and 2020. In order to measure changed forest structures for the selected period, fragmentation analyses based on diverse landscape metrics were carried out for the municipality of Colniza in Mato Grosso. It was found that forest areas experienced also a high degree of fragmentation over the study period, with an increase of 83.3% of the number of patches and a decrease of the mean patch area of 86.1% for the selected time period, resulting in altered habitats for flora and fauna.
Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis).