• Contact
    • Imprint
    • Sitemap
      • Deutsch

UNIWUE UBWUE Universitätsbibliothek

  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen
  • Dewey Decimal Classification
  • 5 Naturwissenschaften und Mathematik
  • 52 Astronomie

526 Mathematische Geografie

Refine

Has Fulltext

  • yes (41)

Is part of the Bibliography

  • yes (41)

Year of publication

  • 2019 (5)
  • 2018 (6)
  • 2017 (5)
  • 2016 (6)
  • 2015 (11)
  • 2014 (1)
  • 2013 (3)
  • 2012 (3)
  • 2011 (1)

Document Type

  • Journal article (38)
  • Doctoral Thesis (3)

Language

  • English (40)
  • German (1)

Keywords

  • remote sensing (7)
  • Burkina Faso (4)
  • Fernerkundung (4)
  • MODIS (4)
  • schistosomiasis (4)
  • Sentinel-1 (3)
  • TerraSAR-X (3)
  • West Africa (3)
  • InSAR (2)
  • Landsat (2)
+ more

Author

  • Kuenzer, Claudia (7)
  • Ullmann, Tobias (7)
  • Wegmann, Martin (6)
  • Conrad, Christopher (5)
  • Baumhauer, Roland (4)
  • Dech, Stefan (4)
  • Walz, Yvonne (4)
  • Forkuor, Gerald (3)
  • Kneisel, Christof (3)
  • Löw, Fabian (3)
+ more

Institute

  • Institut für Geographie und Geologie (37)
  • Institut für Informatik (3)
  • Theodor-Boveri-Institut für Biowissenschaften (1)

EU-Project number / Contract (GA) number

  • 227159 (1)

41 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Contributions of actual and simulated satellite SAR data for substrate type differentiation and shoreline mapping in the Canadian Arctic (2017)
Banks, Sarah ; Millard, Koreen ; Behnamian, Amir ; White, Lori ; Ullmann, Tobias ; Charbonneau, Francois ; Chen, Zhaohua ; Wang, Huili ; Pasher, Jon ; Duffe, Jason
Detailed information on the land cover types present and the horizontal position of the land–water interface is needed for sensitive coastal ecosystems throughout the Arctic, both to establish baselines against which the impacts of climate change can be assessed and to inform response operations in the event of environmental emergencies such as oil spills. Previous work has demonstrated potential for accurate classification via fusion of optical and SAR data, though what contribution either makes to model accuracy is not well established, nor is it clear what shorelines can be classified using optical or SAR data alone. In this research, we evaluate the relative value of quad pol RADARSAT-2 and Landsat 5 data for shoreline mapping by individually excluding both datasets from Random Forest models used to classify images acquired over Nunavut, Canada. In anticipation of the RADARSAT Constellation Mission (RCM), we also simulate and evaluate dual and compact polarimetric imagery for shoreline mapping. Results show that SAR data is needed for accurate discrimination of substrates as user’s and producer’s accuracies were 5–24% higher for models constructed with quad pol RADARSAT-2 and DEM data than models constructed with Landsat 5 and DEM data. Models based on simulated RCM and DEM data achieved significantly lower overall accuracies (71–77%) than models based on quad pol RADARSAT-2 and DEM data (80%), with Wetland and Tundra being most adversely affected. When classified together with Landsat 5 and DEM data, however, model accuracy was less affected by the SAR data type, with multiple polarizations and modes achieving independent overall accuracies within a range acceptable for operational mapping, at 89–91%. RCM is expected to contribute positively to ongoing efforts to monitor change and improve emergency preparedness throughout the Arctic.
An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes (2016)
Knauer, Kim ; Gessner, Ursula ; Fensholt, Rasmus ; Kuenzer, Claudia
Monitoring the spatio-temporal development of vegetation is a challenging task in heterogeneous and cloud-prone landscapes. No single satellite sensor has thus far been able to provide consistent time series of high temporal and spatial resolution for such areas. In order to overcome this problem, data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) have been established and frequently used in recent years to generate high-resolution time series. In order to make it applicable to larger scales and to increase the input data availability especially in cloud-prone areas, an ESTARFM framework was developed in this study introducing several enhancements. An automatic filling of cloud gaps was included in the framework to make best use of available, even partly cloud-covered Landsat images. Furthermore, the ESTARFM algorithm was enhanced to automatically account for regional differences in the heterogeneity of the study area. The generation of time series was automated and the processing speed was accelerated significantly by parallelization. To test the performance of the developed ESTARFM framework, MODIS and Landsat-8 data were fused for generating an 8-day NDVI time series for a study area of approximately 98,000 km\(^{2}\) in West Africa. The results show that the ESTARFM framework can accurately produce high temporal resolution time series (average MAE (mean absolute error) of 0.02 for the dry season and 0.05 for the vegetative season) while keeping the spatial detail in such a heterogeneous, cloud-prone region. The developments introduced within the ESTARFM framework establish the basis for large-scale research on various geoscientific questions related to land degradation, changes in land surface phenology or agriculture
Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment (2017)
Knauer, Kim ; Gessner, Ursula ; Fensholt, Rasmus ; Forkuor, Gerald ; Kuenzer, Claudia
Burkina Faso ranges amongst the fastest growing countries in the world with an annual population growth rate of more than three percent. This trend has consequences for food security since agricultural productivity is still on a comparatively low level in Burkina Faso. In order to compensate for the low productivity, the agricultural areas are expanding quickly. The mapping and monitoring of this expansion is difficult, even on the basis of remote sensing imagery, since the extensive farming practices and frequent cloud coverage in the area make the delineation of cultivated land from other land cover and land use types a challenging task. However, as the rapidly increasing population could have considerable effects on the natural resources and on the regional development of the country, methods for improved mapping of LULCC (land use and land cover change) are needed. For this study, we applied the newly developed ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) framework to generate high temporal (8-day) and high spatial (30 m) resolution NDVI time series for all of Burkina Faso for the years 2001, 2007, and 2014. For this purpose, more than 500 Landsat scenes and 3000 MODIS scenes were processed with this automated framework. The generated ESTARFM NDVI time series enabled extraction of per-pixel phenological features that all together served as input for the delineation of agricultural areas via random forest classification at 30 m spatial resolution for entire Burkina Faso and the three years. For training and validation, a randomly sampled reference dataset was generated from Google Earth images and based on expert knowledge. The overall accuracies of 92% (2001), 91% (2007), and 91% (2014) indicate the well-functioning of the applied methodology. The results show an expansion of agricultural area of 91% between 2001 and 2014 to a total of 116,900 km\(^2\). While rainfed agricultural areas account for the major part of this trend, irrigated areas and plantations also increased considerably, primarily promoted by specific development projects. This expansion goes in line with the rapid population growth in most provinces of Burkina Faso where land was still available for an expansion of agricultural area. The analysis of agricultural encroachment into protected areas and their surroundings highlights the increased human pressure on these areas and the challenges of environmental protection for the future.
Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series (2016)
Clauss, Kersten ; Yan, Huimin ; Kuenzer, Claudia
Rice is an important food crop and a large producer of green-house relevant methane. Accurate and timely maps of paddy fields are most important in the context of food security and greenhouse gas emission modelling. During their life-cycle, rice plants undergo a phenological development that influences their interaction with waves in the visible light and infrared spectrum. Rice growth has a distinctive signature in time series of remotely-sensed data. We used time series of MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD13Q1 and MYD13Q1 and a one-class support vector machine to detect these signatures and classify paddy rice areas in continental China. Based on these classifications, we present a novel product for continental China that shows rice areas for the years 2002, 2005, 2010 and 2014 at 250-m resolution. Our classification has an overall accuracy of 0.90 and a kappa coefficient of 0.77 compared to our own reference dataset for 2014 and correlates highly with rice area statistics from China’s Statistical Yearbooks (R2 of 0.92 for 2010, 0.92 for 2005 and 0.90 for 2002). Moderate resolution time series analysis allows accurate and timely mapping of rice paddies over large areas with diverse cropping schemes.
Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning (2019)
Baumhoer, Celia A. ; Dietz, Andreas J. ; Kneisel, C. ; Kuenzer, C.
Sea level rise contribution from the Antarctic ice sheet is influenced by changes in glacier and ice shelf front position. Still, little is known about seasonal glacier and ice shelf front fluctuations as the manual delineation of calving fronts from remote sensing imagery is very time-consuming. The major challenge of automatic calving front extraction is the low contrast between floating glacier and ice shelf fronts and the surrounding sea ice. Additionally, in previous decades, remote sensing imagery over the often cloud-covered Antarctic coastline was limited. Nowadays, an abundance of Sentinel-1 imagery over the Antarctic coastline exists and could be used for tracking glacier and ice shelf front movement. To exploit the available Sentinel-1 data, we developed a processing chain allowing automatic extraction of the Antarctic coastline from Seninel-1 imagery and the creation of dense time series to assess calving front change. The core of the proposed workflow is a modified version of the deep learning architecture U-Net. This convolutional neural network (CNN) performs a semantic segmentation on dual-pol Sentinel-1 data and the Antarctic TanDEM-X digital elevation model (DEM). The proposed method is tested for four training and test areas along the Antarctic coastline. The automatically extracted fronts deviate on average 78 m in training and 108 m test areas. Spatial and temporal transferability is demonstrated on an automatically extracted 15-month time series along the Getz Ice Shelf. Between May 2017 and July 2018, the fronts along the Getz Ice Shelf show mostly an advancing tendency with the fastest moving front of DeVicq Glacier with 726 ± 20 m/yr.
Assessing Spatiotemporal Variations of Sentinel-1 InSAR Coherence at Different Time Scales over the Atacama Desert (Chile) between 2015 and 2018 (2019)
Ullmann, Tobias ; Sauerbrey, Julia ; Hoffmeister, Dirk ; May, Simon Matthias ; Baumhauer, Roland ; Bubenzer, Olaf
This study investigates synthetic aperture radar (SAR) time series of the Sentinel-1 mission acquired over the Atacama Desert, Chile, between March 2015 and December 2018. The contribution analyzes temporal and spatial variations of Sentinel-1 interferometric SAR (InSAR) coherence and exemplarily illustrates factors that are responsible for observed signal differences. The analyses are based on long temporal baselines (365–1090 days) and temporally dense time series constructed with short temporal baselines (12–24 days). Results are compared to multispectral data of Sentinel-2, morphometric features of the digital elevation model (DEM) TanDEM-X WorldDEM™, and to a detailed governmental geographic information system (GIS) dataset of the local hydrography. Sentinel-1 datasets are suited for generating extensive, nearly seamless InSAR coherence mosaics covering the entire Atacama Desert (>450 × 1100 km) at a spatial resolution of 20 × 20 meter per pixel. Temporal baselines over several years lead only to very minor decorrelation, indicating a very high signal stability of C-Band in this region, especially in the hyperarid uplands between the Coastal Cordillera and the Central Depression. Signal decorrelation was associated with certain types of surface cover (e.g., water or aeolian deposits) or with actual surface dynamics (e.g., anthropogenic disturbance (mining) or fluvial activity and overland flow). Strong rainfall events and fluvial activity in the periods 2015 to 2016 and 2017 to 2018 caused spatial patterns with significant signal decorrelation; observed linear coherence anomalies matched the reference channel network and indicated actual episodic and sporadic discharge events. In the period 2015–2016, area-wide loss of coherence appeared as strip-like patterns of more than 80 km length that matched the prevailing wind direction. These anomalies, and others observed in that period and in the period 2017–2018, were interpreted to be caused by overland flow of high magnitude, as their spatial location matched well with documented heavy rainfall events that showed cumulative precipitation amounts of more than 20 mm.
Assessing Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral Indices in the Arctic Mackenzie Delta Region between 1985 and 2018 (2019)
Nill, Leon ; Ullmann, Tobias ; Kneisel, Christof ; Sobiech-Wolf, Jennifer ; Baumhauer, Roland
Air temperatures in the Arctic have increased substantially over the last decades, which has extensively altered the properties of the land surface. Capturing the state and dynamics of Land Surface Temperatures (LSTs) at high spatial detail is of high interest as LST is dependent on a variety of surficial properties and characterizes the land–atmosphere exchange of energy. Accordingly, this study analyses the influence of different physical surface properties on the long-term mean of the summer LST in the Arctic Mackenzie Delta Region (MDR) using Landsat 30 m-resolution imagery between 1985 and 2018 by taking advantage of the cloud computing capabilities of the Google Earth Engine. Multispectral indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Tasseled Cap greenness (TCG), brightness (TCB), and wetness (TCW) as well as topographic features derived from the TanDEM-X digital elevation model are used in correlation and multiple linear regression analyses to reveal their influence on the LST. Furthermore, surface alteration trends of the LST, NDVI, and NDWI are revealed using the Theil-Sen (T-S) regression method. The results indicate that the mean summer LST appears to be mostly influenced by the topographic exposition as well as the prevalent moisture regime where higher evapotranspiration rates increase the latent heat flux and cause a cooling of the surface, as the variance is best explained by the TCW and northness of the terrain. However, fairly diverse model outcomes for different regions of the MDR (R2 from 0.31 to 0.74 and RMSE from 0.51 °C to 1.73 °C) highlight the heterogeneity of the landscape in terms of influential factors and suggests accounting for a broad spectrum of different factors when modeling mean LSTs. The T-S analysis revealed large-scale wetting and greening trends with a mean decadal increase of the NDVI/NDWI of approximately +0.03 between 1985 and 2018, which was mostly accompanied by a cooling of the land surface given the inverse relationship between mean LSTs and vegetation and moisture conditions. Disturbance through wildfires intensifies the surface alterations locally and lead to significantly cooler LSTs in the long-term compared to the undisturbed surroundings.
Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus) (2018)
Zielewska-Büttner, Katarzyna ; Heurich, Marco ; Müller, Jörg ; Braunisch, Veronika
Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management.
Soil and water conservation in Burkina Faso, West Africa (2018)
Nyamekye, Clement ; Thiel, Michael ; Schönbrodt-Stitt, Sarah ; Zoungrana, Benewinde J.-B. ; Amekudzi, Leonard K.
Inadequate land management and agricultural activities have largely resulted in land degradation in Burkina Faso. The nationwide governmental and institutional driven implementation and adoption of soil and water conservation measures (SWCM) since the early 1960s, however, is expected to successively slow down the degradation process and to increase the agricultural output. Even though relevant measures have been taken, only a few studies have been conducted to quantify their effect, for instance, on soil erosion and environmental restoration. In addition, a comprehensive summary of initiatives, implementation strategies, and eventually region-specific requirements for adopting different SWCM is missing. The present study therefore aims to review the different SWCM in Burkina Faso and implementation programs, as well as to provide information on their effects on environmental restoration and agricultural productivity. This was achieved by considering over 143 studies focusing on Burkina Faso’s experience and research progress in areas of SWCM and soil erosion. SWCM in Burkina Faso have largely resulted in an increase in agricultural productivity and improvement in food security. Finally, this study aims at supporting the country’s informed decision-making for extending already existing SWCM and for deriving further implementation strategies.
Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches (2018)
Lausch, Angela ; Borg, Erik ; Bumberger, Jan ; Dietrich, Peter ; Heurich, Marco ; Huth, Andreas ; Jung, András ; Klenke, Reinhard ; Knapp, Sonja ; Mollenhauer, Hannes ; Paasche, Hendrik ; Paulheim, Heiko ; Pause, Marion ; Schweitzer, Christian ; Schmulius, Christiane ; Settele, Josef ; Skidmore, Andrew K. ; Wegmann, Martin ; Zacharias, Steffen ; Kirsten, Toralf ; Schaepman, Michael E.
Forest ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our forest ecosystems as well as their ecosystem functions. The relationships between drivers, stress, and ecosystem functions in forest ecosystems are complex, multi-faceted, and often non-linear, and yet forest managers, decision makers, and politicians need to be able to make rapid decisions that are data-driven and based on short and long-term monitoring information, complex modeling, and analysis approaches. A huge number of long-standing and standardized forest health inventory approaches already exist, and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis, and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. Therefore, this paper discusses and presents in detail five sets of requirements, including their relevance, necessity, and the possible solutions that would be necessary for establishing a feasible multi-source forest health monitoring network for the 21st century. Namely, these requirements are: (1) understanding the effects of multiple stressors on forest health; (2) using remote sensing (RS) approaches to monitor forest health; (3) coupling different monitoring approaches; (4) using data science as a bridge between complex and multidimensional big forest health (FH) data; and (5) a future multi-source forest health monitoring network. It became apparent that no existing monitoring approach, technique, model, or platform is sufficient on its own to monitor, model, forecast, or assess forest health and its resilience. In order to advance the development of a multi-source forest health monitoring network, we argue that in order to gain a better understanding of forest health in our complex world, it would be conducive to implement the concepts of data science with the components: (i) digitalization; (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles; (iii) Semantic Web; (iv) proof, trust, and uncertainties; (v) tools for data science analysis; and (vi) easy tools for scientists, data managers, and stakeholders for decision-making support.
  • 1 to 10

DINI-Zertifikat     OPUS4 Logo