541 Physikalische Chemie
Refine
Has Fulltext
- yes (88)
Is part of the Bibliography
- yes (88)
Year of publication
Document Type
- Doctoral Thesis (46)
- Journal article (25)
- Preprint (17)
Keywords
- Spektroskopie (11)
- Ultrakurzzeitspektroskopie (10)
- Femtosekundenspektroskopie (7)
- Einwandige Kohlenstoff-Nanoröhre (6)
- Kohlenstoff-Nanoröhre (6)
- Exziton (5)
- Dotierung (4)
- Laserspektroskopie (4)
- Pump-Probe-Technik (4)
- Ultraschnelle Photochemie (4)
Institute
- Institut für Physikalische und Theoretische Chemie (73)
- Institut für Funktionsmaterialien und Biofabrikation (5)
- Fakultät für Chemie und Pharmazie (4)
- Graduate School of Science and Technology (4)
- Institut für Organische Chemie (4)
- Physikalisches Institut (4)
- Institut für Anorganische Chemie (2)
- Fakultät für Physik und Astronomie (1)
Sonstige beteiligte Institutionen
- Fraunhofer-Institut für Silicatforschung ISC (3)
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany (2)
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan (2)
- Center for Nanosystems Chemistry (CNC), Universität Würzburg (1)
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany (1)
- Center of Excellence for Science and Technology - Integration of Mediterranean region (STIM), Faculty of Science, University of Split, Poljička cesta 35, 2100 Split, Croatia (1)
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague, Czech Republic (1)
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain (1)
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany (1)
- Department of Chemistry, Sungkyunkwan University, 440-746 Suwon, Republic of Korea (1)
ResearcherID
- M-1240-2017 (1)
We introduce fluorescence-detected pump–probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump–probe spectra simultaneously. We then push the technique towards single TBI molecules and analyze the statistical distribution of their excitation spectra. Furthermore, we demonstrate the ultrafast transient evolution of several individual molecules, highlighting their different behavior in contrast to the ensemble due to their individual local environment. By correlating the linear and nonlinear spectra, we assess the effect of the molecular environment on the excited-state energy.
This thesis includes measurements that were recorded by cooperation partners. The EPR spec‐ trosa mentioned in section 5.2 were recorded by Michael Auth from the Dyakonov Group (Ex‐ perimental Physics VI, Julius‐Maximilians‐Universität, Würzburg). The TREFISH experiments and transient absorption in section 5.4 spectra were performed by Jašinskas et al. from the V. Gulbi‐ nas group (Center for Physical Sciences and Technology, Vilnius, Lithuania). This dissertation investigated the interactions of semiconducting single‐walled carbon nanotubes (SWNTs) of (6,5) chirality with their environment. Shear‐mixing provided high‐quality SWNT sus‐ pensions, which was complemented by various film preparation techniques. These techniques were in turn used to prepare heterostructures with MoS2 and hBN, which were examined with a newly constructed photoluminescence microscope specifically for this purpose. Finally, the change of spectral properties of SWNTs upon doping was investigated in more detail, as well as the behaviour of charge carriers in the tubes themselves. To optimise the SWNT sample preparation techniques that supplied the other experiments, the sample quality of shear‐mixed preparations was compared with that of sonicated samples. It was found that the quantum efficiency of sheared suspensions exceeds that of sonicated suspensions as soon as the sonication time exceeds 30 min. The higher PLQY is due to the lower defect concentration in shear‐mixed samples. Via transient absorption, a mean lifetime of 17.3 ps and a mean distance between defects of 192.1 nm could be determined. Furthermore, it was found that the increased efficiency of horn sonication is probably not only due to higher shear forces acting on the SWNT bundles but also that the shortening of PFO‐BPy strands plays a significant role. Sonication of very long polymer strands significantly increased their effectiveness in shear mixing. While previous approaches could only achieve very low concentrations of SWNTs in suspensions, pre‐sonicated polymer yielded results which were comparable with much shorter PFO‐BPy batches. Reference experiments also showed that different aggregation processes are relevant during production and further processing. Initial reprocessing of carbon nanotube raw material requires 7 h sonication time and over 24 h shear mixing before no increase in carbon nano concentration is detectable. However, only a few minutes of sonication or shear mixing are required when reprocessing the residue produced during the separation of the slurry. This discrepancy indicates that different aggregates are present, with markedly different aggregation properties. To study low‐dimensional heterostructures, a PL microscope was set up with the ability to ob‐ serve single SWNTs as well as monolayers of other low‐dimensional systems. Furthermore, sam‐ ples were prepared which bring single SWNTs into contact with 2D materials such as h‐BN andMoS2 layers and the changes in the photoluminescence spectrum were documented. For h‐BN, it was observed whether previous methods for depositing SWNTs could be transferred for photo‐ luminescence spectroscopy. SWNTs were successfully deposited on monolayers via a modified drip coating, with the limitation that SWNTs aggregate more at the edges of the monolayers. Upon contact of SWNTs with MoS2, significant changes in the emission properties of the mono‐ layers were observed. The fluorescence, which was mainly dominated by excitons, was shifted towards trion emission. Reference experiments excluded PFO‐BPy and toluene as potential causes. Based on the change in the emission behaviour of MoS2, the most plausible explanation is a photoinduced charge transfer leading to delocalised charge carriers on MoS2. In contrast, on SWNTs, the introduction of additional charges would constitute a quenching centre, which would quench their PL emission, making them undetectable in the PL image. In the last chapter, the electronic properties of doped SWNTs and the behaviour of charge carri‐ ers inside the tubes should be investigated. First, the change in the conductivity of SWNT films with increasing doping levels was docu‐ mented. The resistance of the films drops drastically at minimum doping. After the initial in‐ troduction of charges, the resistance drops with increasing dopant concentration according to a double logarithmic curve. The initial drop could be due to a reduction of contact resistances within the SWNT network film, but this could not be further investigated within the scope of this PhD thesis. In cooperation with Andreas Sperlich and Michael Auth, the spin concentration of SWNTs at different doping levels was determined. The obtained concentrations were compared with the carrier concentrations determined from PL and absorption spectra. At low spin densities, good agreement with previous models was found. Furthermore, the presence of isolated spins strongly suggests a localised charge carrier distribution at temperatures around 10 K. When the charge density is increased, the spin density deviates significantly from the charge carrier con‐ centration. This discrepancy is attributed to the increasing delocalisation of charge carriers at high charge densities and the interactions of neighbouring spins. These results strongly indicate the existence of localised charge carriers in SWNTs at low temperatures. Next, the effect of doping on the Raman spectra of SWNT suspensions was investigated. In gen‐ eral, doping is expected to reduce the intensity of the Raman bands, i.e. a consequence of the reduced resonance gain due to bleaching of the S2 transition. However, similar to the resistivity measurements, the oscillator strength of the G+ band drops sharply in the first doping steps. It was also found that the G+ band decreases more than would be expected due to loss of reso‐ nance condition. Furthermore, the G‐ is bleached faster than the G+ band. All these anomalies suggest that resonance enhancement is not the only relevant effect. Another much faster deac‐ tivation path for the excitons may be introduced by doping. This would leave less time for the scattering process to occur and reduce the oscillator strength of the Raman bands. In cooperation with Vidmantas et al., the photoinduced charge carrier behaviour of SWNT/PCBM films was investigated. The required films were prepared by drop coating. The SWNT suspen‐ sions required for this were obtained from sheared SWNT preparations. Using transient absorp‐ tion and TREFISH, a number of charge transfer effects were identified and their dynamics in‐ vestigated: the recombination of neutral excitons (< 50 ps), the electron transfer from carbon nanotubes to PCBM molecules (< 1 ps), the decay of charge‐transfer excitons (∼200 ps), the recombination of charge carriers between charge‐transfer excitons (1 ns to 4 ns) and finally the propagation through the SWNT network (∼20 ns)
This thesis describes novel concepts for the measurement of the static and dynamic properties of the electronic structure of molecules and nanocrystals in the liquid phase by means of coherent fluorescence-detected spectroscopy in two and three frequency dimensions. These concepts are based on the systematic variation ("phase cycling") of a sequence of multiple time-delayed femtosecond excitation pulses in order to decode a multitude of novel nonlinear signals from the resulting phase-dependent fluorescence signal. These signals represent any permutation of correlations between zero-, one-, two-, and three-quantum coherences. To this end, two new phase-cycling schemes have been developed which can simultaneously resolve and discriminate several nonlinear signals of sixth order, including those of the fourth order of nonlinearity.
By means of the sixth-order signals recorded in this work, static properties of highly excited electronic states in molecules such as their energies, transition dipole moments, and relative displacement of electronic potential surfaces, as well as dynamic properties in terms of their relaxation kinetics, can be ascertained. Furthermore, it was shown that these signals are suitable for the characterization of exciton-exciton correlations in colloidal quantum dots and for the measurement of ultrafast exciton-exciton annihilation in molecular aggregates.
The experiments performed in this thesis mark an important step towards the complete characterization of the nonlinear response of quantum systems. In view of this, the concept of fluorescence-detected multiple-quantum coherence multidimensional spectroscopy introduced here offers a unified, systematic approach.
In virtue of the technical advantages such as the use of a single excitation beam and the absence of nonresonant contributions, the measurement protocols developed here can be directly transferred to other incoherent observables and to sample systems in other states of matter. Furthermore, the approaches presented here can be systematically extended to higher frequency dimensions and higher orders of nonlinearity.
Um den jahrtausendealten Weg der Menschheit vom Papyrus über Buchdruck und siliziumbasierte Halbleiter in Richtung noch leistungsfähigerer Technologien zu gehen und weiterhin Heureka-Momente zu schaffen, bieten Kohlenstoffnanoröhren ein weites Forschungsfeld. Besonders die halbleitenden Charakteristika von SWNTs sowie die Manipulation dieser durch Dotierung bergen viele Möglichkeiten für zukünftige Anwendungen in moderner Elektrotechnologie. Der Weg zu einer industriellen Implementierung von SWNTs in neuartigen optoelektronischen Bauteilen ließe sich durch eine Ausweitung des Wissens bezüglich SWNTs und der dotierungsbasierten Anpassung ihrer Eigenschaften ebnen.
Mit dieser Erkenntniserweiterung als Zielsetzung wurden im Rahmen dieser Dissertation halbleitende, einwandige (6,5)-Kohlenstoffnanoröhren als chiralitätsreine, polymerstabilisierte Proben untersucht. Die ultrakurzzeitaufgelöste Spektroskopie der SWNTs erfolgte an organischen Suspensionen wie auch Dünnschichtfilmen, die je mittels eines gewissen Quantums an Gold(III)-chlorid dotiert worden waren. So konnten die ablaufenden Dynamiken auf einer ps-Zeitskala untersucht werden.
In Kapitel 4 konnte mittels transienter Absorptionsexperimente an redoxchemisch p-dotierter SWNT-Suspensionen zunächst gezeigt werden, dass sich die bei optischer Anregung gebildeten Trionen nicht analog zu Exzitonen diffusiv entlang der Nanoröhre bewegen, sondern lokalisiert vorliegen. Die längere trionischen Zerfallsdauer nach X$_1$- verglichen mit X$_1^+$-resonanter Anregung zeugt außerdem davon, dass das Trion aus dem Exziton gespeist wird. Der Einfluss der Dotierung auf die Zerfallsdynamiken von X$_1$ und X$_1^+$ wurde an SWNT-Dünnschichtfilmen untersucht. Das Photobleichsignal des Exzitons verschiebt hypsochrom und zerfällt schneller mit zunehmender Ladungsträgerdichte durch höherer Gold(III)-chloridkonzentrationen. Dies resultiert aus dem verringerten Abstand zwischen den Ladungsträgern, welche als nichtstrahlende Löschstellen fungieren. Für das X$_1^+$-PB ist ein ähnliches Verhalten zu beobachten. Dabei wird dieses Signal mit weiter steigender Dotierung von einer der H-Bande zuzuordnenden Photoabsorption überlagert. Diese lässt sich in einer starken Sättigung der Dotierung wie auch einer hohen Bandkantenverschiebung begründen.
In Kapitel 5 wurde die Größe der Exzitonen und Trionen in dotierten SWNT-Dünnschichtfilmen mittels des Phasenraumfüllmodells bestimmt. Dabei lag besonderes Augenmerk auf der Kompensation des PB/PA-Überlapps, dem schnellen Zerfall, einem Ausgleich von Differenzen zwischen Anrege- und Absorptionsspektrum sowie dem Anteil intrinsischer/dotierter Nanorohrsegmente, um korrigierte Größen $\xi_\mathrm{k}$ zu erhalten. Für die Trionengröße wurde zusätzlich der Überlapp der Absorptionsbanden einbezogen, um korrigierte Werte $\xi_{\mathrm{T,k}}$ zu bestimmen. $\xi_\mathrm{k}$ beträgt in der intrinsischen Form 6$\pm$2\,nm und bleibt bis zu einer Ladungsträgerdichte $n_{\mathrm{LT}}<0.10$\,nm$^{-1}$ etwa gleich, anschließend ist ein Absinken bis auf etwa 4\,nm bei $n_{\mathrm{LT}}\approx0.20$\,nm$^{-1}$ zu beobachten. Für diesen Trend ist die Überlagerung von Exziton- und H-Bande verantwortlich, da so der Faktor zur Bestimmung des Anteils intrinsischer Nanorohrsegmente an der SWNT verfälscht wird. Die Abweichung der intrinsischen Größe von den in der Literatur berichteten 13$\pm$3\,nm ist möglicherweise auf Unterschiede in der Probenpräparation zurückzuführen. Für die Trionengröße ergibt sich bei steigender Dotierung ein ähnliches Verhalten: Sie beträgt für $n_{\mathrm{LT}}<0.20$\,nm$^{-1}$ 1.83$\pm$0.47\,nm, was in der Größenordnung in guter Übereinstimmung mit der Literatur ist. Für höhere Dotierungen sinkt $\xi_{\mathrm{T,k}}$ bis auf 0.92$\pm$0.26nm ab. Dies erklärt sich dadurch, dass bei höherer $n_{\mathrm{LT}}$ die H-Bande das Spektrum dominiert, sodass der Einfluss der Absorptionsbandenüberlagerung nicht mehr vollständig durch den entsprechenden Korrekturfaktor kompensiert werden kann.
Kapitel 6 beschäftigte sich anstelle redoxchemischer Dotierung der nanoskaligen Halbleiter mit der (spektro-)elektrochemischen Untersuchung von Vorläufern molekularer Radikale. SWV-Messungen weisen dabei darauf hin, dass die Pyrene Pyr1-Pyr3 entsprechend der Anzahl ihrer Substituenten bei Reduktion Mono-, Bi- beziehungsweise Tetraradikale bilden. Die strukturelle Ähnlichkeit der Moleküle äußert sich in gleichen Reduktionspotentialen wie auch ähnlichen potentialabhängigen Absorptionsspektren. Während nur marginale Unterschiede in den PL-Spektren der neutralen und reduzierten Spezies festgestellt werden konnte, lieferte das zeitkorrelierte Einzelphotonenzählen aufschlussreichere Ergebnisse: So wird die Fluoreszenzlebensdauer stark von der Polarität der Umgegbung beeinflusst - bereits die Zugabe des Leitsalzes führt hier zu Änderungen. Die durchschnittliche Fluoreszenzlebensdauer $\tau_{\mathrm{av}}$ sinkt außerdem mit Reduktion und Radikalbildung; für höhere Emissionswellenlängen ist $\tau_{\mathrm{av}}$ außerdem höher. Insgesamt verdeutlichten die Experimente die gute Abschirmung zwischen Pyrenkern und Naphthalimidsubstituenten der Moleküle sowie die Sensibilität gegenüber dem Medium durch TICT, das Vorhandensein von Bi- und Tetraradikalen kann allerdings nicht vollständig belegt werden, wofür EPR-Messugen notwendig wären.
Nanoröhren, die auf dem Element Kohlenstoff basieren, besitzen ein großes Potential für ihre
Anwendung als neuartige und nachhaltige Materialien im Bereich der Optoelektronik und weiteren
zukunftsweisenden Technologiefeldern. Um jedoch hierfür genutzt werden zu können, ist
ein tiefgreifendes Kenntnis über ihre außergewöhnlichen photophysikalischen Eigenschaften notwendig.
Kohlenstoffnanoröhren sind als eindimensionale Halbleiter sehr vielseitige Materialien.
Jedoch ist der Zusammenhang zwischen ihrer Eignung als Halbleiter und der dafür notwendigen
Dotierung nur sehr unzureichend verstanden.
Die Ziele der vorliegenden Dissertation waren deshalb, ein grundlegendes Verständnis der photophysikalischen
Energietransferprozesse in Nanoröhren zu erlangen und den Einfluss von gezielten
Dotierungen auf diese Prozesse im Hinblick auf ihre Eigenschaften als eindimensionale Halbleiter
detailliert zu untersuchen. Die Grundlage für die Experimente bildeten verschiedene Filme
aus einwandigen (6,5)-Kohlenstoffnanoröhren, die durch ein Polyfluoren-Copolymer in einer
organischen Lösungsmittelumgebung isoliert wurden. Mit Hilfe der Ultrakurzzeitspektroskopie
wurden die auf einer schnellen (ps-ns) Zeitskala ablaufenden photophysikalischen Prozesse an
diesen Filmen unter verschiedenen Bedingungen untersucht und analysiert.
In Kapitel 4 wurde der generelle Energietransfer der Kohlenstoffnanoröhren in Polymermatrizen
im Detail studiert. Hierbei wurden durch Simulationen theoretische dreidimensionale
Verteilungen von Kohlenstoffnanoröhren erzeugt und die nach einem Energietransfer vorliegenden
Polarisationsanisotropien berechnet. Verschiedene Berechnungsansätze ergaben, dass die
Nanorohrdichte ϱSWCNT für ein Massenüberschuss X der Matrix nahezu unabhängig von dem
Röhrenvolumen war und durch ϱSWCNT = X−1 · 40 000 μm−1 angenähert werden konnte. Die
Simulationen lieferten von der Röhrendichte abhängige Gaußverteilungen der zwischen den
Nanoröhren vorliegenden Abständen. Aus den Verteilungen konnte weiterhin der Anteil an Röhren
bestimmt werden, die für einen Energietransfer zur Verfügung stehen. Weitere Simulationen
von Nanorohrverteilungen lieferten die Polarisationsanisotropie in Abhängigkeit von der Anzahl
an durchgeführten Energietransferschritten. Die Ergebnisse aus den Simulationen wurden zur
Interpretation der Ultrakurzzeitmessungen angewandt. Hierbei wurden durch die Variation der
Polymermatrix die zwischen den Nanoröhren vorliegenden Abstände verändert und damit die
Art und Intensität des Energietransfers kontrolliert. In Messungen der transienten Anisotropie
zeigte sich, dass ein Exziton nach seiner Erzeugung zwei depolarisierende Energietransferschritte
durchführte. Die Zerfallsdynamiken des Exzitons gaben auch klare Hinweise auf weitere nicht
depolarisierende Energietransferprozesse, die durch parallel zueinander stehende Übergangsdipolmomente
ermöglicht wurden. Eine Erklärung für dieses Verhalten lieferte die faserige
Struktur der Filme, die sich in Aufnahmen durch das Elektronenmikroskop zeigte.
Das Kapitel 5 beschäftigte sich mit dem Aufbau eines transienten Nahinfrarotspektrometers
und den nötigen experimentellen Umbauten zur Messung der transienten Absorption für energiearme
Signale im Spektralbereich unterhalb von 1.4 eV. Hierzu wurde die Weißlichterzeugung
für die Verwendung von Calciumfluorid umgebaut. Das erzeugte Weißlicht wurde in das aufgebaute
Prismenspektrometer eingekoppelt, um es weitestgehend linear auf einer Energieskala zu dispergieren. Auf diese Weise wurden energiearme Spektralkomponenten nicht auf unverhältnismäßig
viele Pixel verteilt und konnten mit ausreichender Intensität detektiert werden. Die
Lichtdetektion erfolgte mittels zweier Detektorzeilen aus Indiumgalliumarsenid, die das transiente
Signal durch eine direkte Referenzierung stabilisierten. Weiterhin wurde in diesem Kapitel die
Justage und die programmierte Ansteuerung des Systems detailliert beschrieben. Hierbei wurde
auf die Justage der Einkopplung per Freistrahl, die Kalibrierung mittels Bandpassspektren
sowie auf die Aufnahme von Weißlichtspektren und transienten Karten detailliert eingegangen.
An Nanorohrdispersionen durchgeführten Testmessungen zeigten, dass das transiente Nahinfrarotspektrometer
mit direkter Signalreferenzierung einwandfrei funktionierte und daher den
beobachtbaren Spektralbereich auf den Bereich von Energien bis unterhalb von 1 eV erweiterte.
Damit ermöglichte der Aufbau einen Zugang zu der Beobachtung größerer Nanorohrchiralitäten
sowie zu der Untersuchung von energiearmen, spektralen Signaturen von Nanorohrdefekten.
In Kapitel 6 wurde das transiente Nahinfrarotspektrometer genutzt, um das zeitabhängige
Verhalten von redoxchemisch p-dotierten Nanoröhren zu charakterisieren und quantitativ zu
beschreiben. Hierzu wurden die spektralen Eigenschaften von SWCNT-Dünnfilmen als Funktion
eines steigenden Dotierungsgrades durch die Messungen der transienten und linearen Absorption
studiert. In der linearen Absorption im Bereich von 0.9 - 2.5 eV vereinfachte sich das Spektrum
mit ansteigender Dotierung stark und verlor vor allem im Bereich des ersten Subbandes
deutlich an Oszillatorstärke. Bei starker Dotierung verschwanden die Signalbeiträge von X1
und der Phononenseitenbande. Weiterhin bleichte auch die bei mittleren Dotierungsgraden
auftauchende Trionenabsorption aus und ging in die breite Absorptionsbande der H-Bande über.
Das Erscheinen und Verschwinden der trionischen sowie exzitonischen Absorption war ebenfalls
in der transienten Absorption durch zeitgleich auftretende/verschwindende Photobleichsignale
zu erkennen. Sowohl der Zerfall des exzitonischen PB-Signals wie auch des Trions beschleunigte
sich mit einer steigenden Dotierung. Die Zerfallszeit des Exzitons im undotierten Film betrug
6.87 ps und verkürzte sich auf 0.732 ps bei höheren Dotierungsgraden. Die Zerfallszeit des Photobleichens
des Trions reduzierte sich von 2.02 ps auf 0.440 ps. Auffallend war hierbei, dass das
Trion im Vergleich zu dem Exziton exponentiell zerfiel und damit auf eine Lokalisierung dieses
Zustandes hinweist. Bei höheren Dotierungsmittelkonzentrationen tauchte in der transienten
Absorption ein neuer Signalbeitrag auf. Die Existenz dieses Signals konnte auf die H-Bande
zurückgeführt werden und könnte auf einer Verschiebung des linearen Absorptionsspektrums
aufgrund einer Renormalisierung der Bandlücke oder der Sättigung von Ladungsträgern beruhen.
Das Signal zeigte eine klare Abhängigkeit vom Dotierungsgrad des Nanorohrfilmes. So wies es
eine hypsochrome Verschiebung auf, wurde spektral breiter und seine Zerfallsdauer reduzierte
sich von 1.62 ps auf 0.520 ps mit steigendem Dotierungsgrad.
Im Rahmen dieser Arbeit werden unterschiedliche Aspekte der korrelierten Elektronen-Kerndynamik, anhand verschiedener Modellsysteme untersucht. Dabei wird vor allem auf den Vergleich numerisch exakter und approximativer Methoden zur Beschreibung der Wellenpaketdynamik eingegangen, wobei bei letzterem das Augenmerk auf der Born-Oppenheimer (BO) Näherung liegt. Die verwendeten Modellsysteme erlauben es, die gekoppelte Elektronen-Kern-Dynamik exakt zu beschreiben. Die daraus gewonnenen Ergebnisse dienen als Referenz für den Vergleich mit den Näherungsmethoden.
Im ersten Teil der Arbeit wird die Dynamik eines Wellenpakets in der Umgebung einer Konischen-Durchschneidung (CI) untersucht, wobei die Beschreibung des Wellenpakets quantenmechanisch und durch die klassische Mechanik im Phasenraum erfolgt.
Im zweiten Teil wird die Wahrscheinlichkeitsflussdichte untersucht. Zuerst wird ein Fall konstruiert, in welchem die Bewegung im elektronischen Grundzustand stattfindet, sodass die Bedingungen der BO Näherung erfüllt sind. Dabei wird vor allem auf das Verschwinden der elektronischen Wahrscheinlichkeitsflussdichte innerhalb der BO Näherung eingegangen. Im weiteren Verlauf werden die Flussdichten in der Umgebung einer CI untersucht, wobei unterschiedliche Situationen modelliert werden.
Im dritten Teil wird die Berechnung des elektronischen Impulserwartungswerts innerhalb der BO Näherung untersucht. Dieser verschwindet innerhalb der BO Näherung, wenn man diesen direkt berechnet (Geschwindigkeitsform), während man über das Ehrenfest Theorem (Längenform) sehr gute Werte erhält.
Im vierten Teil wird eine neue Flussdichte, die Translationsflussdichte, vorgestellt. Diese ergibt sich aus der Überlegung, dass die Geschwindigkeitsform des Impulserwartungswerts durch die Wahrscheinlichkeitsflussdichte ausgedrückt werden kann. Demnach muss auch die Längenform einer Flussdichte entsprechen und man erhält die Translationsflussdichte.
While the field of electrochromic (EC) materials and devices (ECDs) continues to advance in terms of color palette and understanding the underlying mechanism, several scientific and technological challenges need to be addressed by optimizing the materials and understanding the electrochemical interplay of these materials in full cells. The main issue here is to further improve the EC profile for color neutrality and cycling stability in order to commercialize dimmable EC products. The transparent conductive substrates used in this work (FTO and ultra-thin ITO glass) have high visible light transmittance (τv > 85%) and low sheet resistance (< 25 Ω·sq-1). In addition, the Li+-containing gel electrolyte has sufficient ionic conductivity (2.8·10-4 S·cm-1 at 25 °C), so the investigated ECDs could achieve a fast response (required ionic conductivity is between 10−3 and 10−7 S·cm-1).
This work shows that the combination of cathodically-coloring Fe-MEPE with anodically-coloring non-stoichiometric nickel oxide (Ni1-xO) electrodes (prepared by the National Institute of Chemistry in Ljubljana, Slovenia) can be used in neutral-coloring type III ECDs. The Fe-MEPE/Ni1-xO ECD with the underbalanced CE (ECD1-1, 2: 1) and the balanced configuration (ECD1-2, 1: 1) are both nearly neutrally-colored (ECD1-1: a* = -6.7, b* = 8.8; ECD1-2: a* = -9.0, b* = 10.1) in the bright state with a τv of almost 70%. Due to the overbalancing of the CE (ECD1-3, 1:3), a deviation (a* = -2.8, b* = 19.9) from the neutral coloration occurred here. The balanced as well as the overbalanced ECD configurations show high electrochemical cycling stability (over 1,000 potentiostatic switching cycles). In general, the overbalanced configuration offers the advantage of a smaller operating voltage range (-1 V ↔ 2.5 V to -1 V ↔ 1.5 V), i.e., avoiding possible electrochemical degradation of the EC materials, electrolyte, or conductive layers. By using a Li RE in the full cell, insights into the optimal matching of electrochemical and optical properties between the two electrodes are obtained to achieve more stable ECDs. Thereby, the redox potentials of both EC electrodes (Fe-MEPE and Ni1-xO) can be measured during operation. The incomplete decolorization of ECD1-1 can be explained by the measured electrode potentials (below the required 4 V vs. Li/Li+), excluding side reactions and degradation at both electrodes. The results demonstrate the importance of using balanced and (slightly) overbalanced ECD configurations with complementary-coloring EC electrodes to achieve high cycling stability and fast switching at low operating voltages. Therefore, this three-electrode configuration provides an excellent method for in situ electrochemical characterization of the individual EC electrodes to better understand the redox processes during device operation and to further improve the optical contrast and cycle stability of ECDs.
The Fe-MEPE/Ni1-xO combination was tested on flexible ultrathin ITO glass (ECD1-4). Here, by applying a low voltage of -1 V ↔ 2.5 V, the MEPE/Ni1-xO ECDs can be reversibly switched from a colored (L* = 35.6, a* = 19.4, b* = -26.7) to a nearly colorless (L* = 78.5, a* = -14.0, b* = 21.3) state. This is accompanied by a change in τv from 6% to 53%. The ECDs exhibit fast response and good cycling stability (5% loss of optical contrast over 100 switching cycles).
To further improve color neutrality and cycling stability, ECDs combining Fe-MEPE and mixed metal oxides as ion storage layers were investigated. Titanium manganese oxide (TMO, Fraunhofer IST) and titanium vanadium oxide (TiVOx, EControl-Glas GmbH & Co. KG) electrodes are compared for use as optically-passive ion storage layers. TiVOx with a maximum charge density of approx. 27 mC·cm-2 and a coloration efficiency of η = 2 cm·C-1 at 584 nm shows a color change from yellow to light gray at 2 V vs. Ag/AgCl, while the slightly anodically-coloring Ti-rich TMO (10.5 mC·cm-², η584 nm = -4 cm·C-1) switches from light yellow to colorless at -2.5 V vs. Ag/AgCl. These materials show only a slight change in τv value from 85% to 75% and from 72% to 81%, respectively, thus reaching the requirements for highly transmissive optical-passive ion storage layers. The ECDs with Fe-MEPE in combination with TiVOx (ECD2-1) and TMO-1 (ECD2-2) are blue-purple in the dark state (0 V) and turn colorless by applying a voltage of 1.5 V, changing the τv value from 28% to 69% and from 21% to 57% in 3 s and 13 s, respectively. The ECDs show fast responses and high cyclability over more than 100 cycles.
In the last section, the simplification of cell architecture by using redox mediators shows that different redox mediators (KHCF(III), Fc-PF6, Fc-BF4, and TMTU) can be used in type II ECDs (4 instead of 5 layers) consisting of Fe-MEPE or Ni1-xO thin film electrodes. The combination of KHCF(III) with Fe-MEPE has a low cycling stability due to the electrochemical formation of Prussian blue (PB). This side reaction is undesirable as it decreases the optical contrast. It can be avoided by using Fc+- (ECD3-5/6) or TMTU-based (ECD3-7) redox mediators, which exhibit reversible redox behavior. A high τv value of 72% is obtained for the use of TMTU. Low concentrations (<0.1 M) of redox mediators decrease the cell voltage for complete switching without affecting the optical properties of the ECDs. The redox couple TMTU/TMFDS2+ (molar ratio of 1:0.1 in 1 M LiClO4/PC as electrolyte) works well in combination with
Ni1-xO electrodes (ECD3-10), with a change in τv value from 38% (colored at 2 V, L* = 67.1, a* = 3.9, b* = 17.2) to 70% at (decolored at -2 V, L* = 86.6, a* = -0.6, b* = 17.2). This result implies that incorporating redox mediators into the electrolyte is an effective means to simplify the cell assembly and color neutrality can be obtained with one optically active WE and a color-neutral redox mediator. Moreover, the combination of Ni1-xO and the colorless TMTU/TMFDS2+ redox mediator is a potential candidate to obtain neutrally colored ECDs.
It is shown that the lab-sized FTO- and ultra-thin ITO-glass-based ECDs are very attractive for energy-efficient EC applications, e.g., in architectural or automotive glazing, aircraft, ships, home appliances and displays. To monitor the EC performance and to prevent diverging electrode potentials during the switching process, the studied three-electrode configuration can help to extend the cycle stability as well as to improve the charge balancing of dimmable applications. The studied ECDs display a route towards neutral tint, e.g., EC active Ni1-xO, optically-inactive mixed metal oxides, and colorless redox mediators. Nevertheless, color neutrality should be further improved to meet the requirements for industrial applications. For future work, a scale-up process from lab-sized (few cm²) to prototype (few m²) ECDs will be necessary.
Reactive hydrocarbon species are important in a multitude of different scientific areas. In this thesis, the vibrational spectra of hydrocarbon radicals, biradicals and their reaction product have been studied in a gas-phase environment. The specific molecules investigated here, are of particular importance in the field of combustion and astrochemistry. They were produced from suitable precursors in a pyrolytically heated micro-reactor and subsequently seeded in an appropriate carrier gas. As methodology, IR/UV ion dip spectroscopy has been utilized, which delivers massselected gas-phase IR spectra of all ionizable species detectable in the molecular beam. These, with the help of DFT calculations, allow for determination of the fingerprint IR spectra, identification of mass carriers and formulation of potential reaction mechanisms. All studies have been conducted in collaboration with the group of Prof. Dr. Anouk M. Rjis and the necessary potent IR radiation has been provided by the free-electron laser FELIX. Thus, the IR/UV measurements have been executed at the FELIX Laboratory of the Radboud University in Nijmegen. The first study presented in this thesis is the investigation of ortho-benzyne in Chapter 3.1. This molecule is of particular interest due to its uncommon electronic structure and its role in high-temperature reactions. Although, the infrared spectrum of o-C6H4 was not accessible, a number of reaction products were identified via their fingerprint spectra. Masses in the range from 78 - 228 were assigned to their respective carrier. The identified species include typical PAHs like naphthalene, phenanthrene, up to triphenylene. The identified masses further suggest a PAH growth heavily influenced by diradical 1,4-cycloaddition followed by fragmentation, as well as by classical HACA- and PAC-like mechanisms. These results were augmented by threshold photoionization measurements from Engelbert Reusch, who identified lighter reaction products, which have insufficient IR absorption or unsuitable ionization characteristics to be identified in the IR/UV experiment. An interesting observation is the identification of m/z = 152. This carrier has been assigned differently by the IR and TPES experiments. Whereas the IR spectrum clearly identifies the species as 2-ethynylnaphthalene, the TPES evidently is in great agreement with biphenylene. This is a good example how different experimental methodologies can benefit from each other to gain a deeper insight into the actual science of a particular system. Probably, the prime example for an aromatically resonance stabilized radical is benzyl. This radical is of high importance for many combustion studies, as it represents the primary high-temperature decomposition product of toluene. The goal of the study was the identification of the benzyl self reaction products and the results are discussed in Section 3.2. The radical was pyrolytically produced by its respective nitrite precursor. The mass spectrum showed that the benzyl self reaction formed two products with C11 and three with C14 constitution. All mass peaks were evenly spaced by two mass units, respectively, which suggests a close relation in formation. Indeed, the C11 products were identified as diphenylmethane and fluorene, which are simply connected via cyclization. The heaviest product was identified as phenanthrene, which is formed via the cyclization of bibenzyl to 9,10-dihydrophenanthrene and subsequent elimination of hydrogen. This result was quiet interesting as the intermediate of this reaction was often assumed to be stilbene, which was not observed in the study. Hence, the reaction seems to undergo cyclization first before phenanthrene is finally formed via hydrogen elimination. Expanding the molecular frame of benzyl by an additional methyl group leads to the xylyl radicals and its decomposition product the xylylenes. Also important in combustion research, xylyl radicals represent the preferred decomposition products of xylene, a frequently used anti-knock agent in modern gasoline blends. After further hydrogen elimination the xylyl radicals can then form their respective xylylenes. The results of the xylyl experiments are discussed in Section 3.3. Here the gas-phase vibrational spectrum in the fingerprint region for all three isomers has been recorded for the first time in isolation. Although, all isomers have a very similar structure and symmetry, and consequently similar vibrational bands, the resolution of the experimental data was exceedingly sufficient for a clear assignment. Additionally, the dimerization products of meta- and para-xylyl could also be identified. A similar approach was taken to determine the fingerprint spectra for the xylylenes. Here, only para-xylylene could be unambiguously identified as the carrier of mass 104. For both ortho- and meta-xylylene precursors, only isomerization products were observed as the carriers of mass 104; benzocyclobutene and styrene, respectively. A possible explanation is elaborated upon in the troubleshooting Sec- tion 3.4.3.5. In the final experimental section a study on the decomposition of phthalide is presented. The objective of this experiment was mainly focused around the formation of C7 species, particularly the fulvenallenyl radical C7H5. In fact, the first experimental fingerprint spectrum of isolated C7H5 in the gas-phase was measured and is displayed in Fig. 3.45. Furthermore, the experiment demonstrates that the pyrolysis products of phthalide are excellent soot precursors, as many heavier reaction products have been identified. These include typical PAH species like naphthalene and phenanthrene as well as their methylated isomers. A large number of molecules with terminal ethynyl moieties indicate a strong influence of HACA growth in the experimental environment. However, many formation pathways of products have been discussed, which are formed involving experiment specific species, like C5H5 and C7H5, and often include expansion steps from 5- to 6-membered rings.
Die Lehre von physikalisch-chemischen Inhalten in der universitären Lehramtsausbildung und im gymnasialen Chemieunterricht ist herausfordernd. Mögliche Ursachen hierfür sind das teils hohe Abstraktionsniveau und fehlende Messgeräte. Im Rahmen dieser Arbeit wurden kostengünstige Messgeräte entwickelt, mit denen Lernende in typische physikochemische Methoden und deren Anwendungen experimentell eingeführt werden können. Durch offen gestaltete und kontextbezogene Experimente zu Themenfeldern der Spektroskopie, Thermodynamik und Kinetik sollen Lernende einen phänomenologischen Zugang zur physikalischen Chemie finden. Durch eine entsprechende didaktische und experimentelle Aufarbeitung der Konzepte sollen insbesondere Schülerinnen und Schüler ohne größeres Vorwissen für physikalisch-chemische Inhalte im Sinne eines modernen und experimentell orientierten Chemieunterrichts begeistert werden.
The present work builds on a conjugated electrochromic polymer with a highly transmissive and colorless bright state and its application in electrochromic devices. The main body of this work focuses on the investigation of the influence of moisture on electrochromic devices and solutions to overcome possible degradation of these devices due to moisture ingress.
Firstly, a series of EDOT derivatives with a terminal double bond in the lateral sidechain to potentially achieve a highly transmissive and fully colorless bright state was investigated. All of the EDOT derivatives were electrochemically polymerized and characterized by means of (in-situ) spectroelectrochemistry. The results highlight the dramatic influence of the terminal double bond on the improved visible light transmittance and color neutrality in the bright state. After detailed evaluation and comparison, the best performing compound, which contains a hexenyl sidechain (PEDOT-EthC6), was scaled-up by changing the deposition technique from an electrochemical to a chemical in-situ polymerization process on a R2R-pilot line in an industrially relevant environment. The R2R-processed PEDOTEthC6 half-cells were characterized in detail and provide enhanced electrochromic properties in terms of visible light transmittance and color neutrality in the bright state as well as short response times, improved contrast ratio, coloration efficiency and cycling stability (10 000 cycles).[21]
In a second step, the novel PEDOT-EthC6 electrochromic polymer was combined with a Prussian Blue counter electrode and a solid polymer electrolyte to form an all-solid-sate ECDs based on complementary switching electrodes and PET-ITO as flexible substrates. The fabricated ECDs were optically and spectroelectrochemically characterized. Excellent functionality of the S2S-processed flexible ECDs was maintained throughout 10 000 switching cycles under laboratory conditions. The ECDs offer enhanced electrochromic properties in terms of visible light transmittance change and color neutrality in the bright state as well as contrast ratio, coloration efficiency, cycling stability and fast response times. Furthermore, the final device assembly was transferred from a S2S-process to a continuous R2R-lamination process.[238]
In a third step, the PEDOT-EthC6/PB-based ECDs were submitted to conscious environmental aging tests. The emphasis of the research presented in this work, was mainly put at the influence of moisture and possible failure mechanisms regarding the PEDOT-EthC6/PB based ECDs. An intense brown coloration of the electrodes was observed while cycling the ECDs in humid atmospheres (90% rH) as a major degradation phenomenon. The brown coloration and a thereby accompanied loss of conductivity of the PET-ITO substrates was related to significant degradation of the ITO layers, inserted as the conductive layers in the flexible ECDs. A dissolution of the ITO thin films and formation of metallic indium particles on the surface of the ITO layers was observed that harmed the cycling stability enormously. The conductive layers of the aged ECDs were investigated by XRD, UV-Vis, SEM and spectroelectrochemical measurements and validated the supposed irreversible reduction of the ITO layers.[279]
In the absence of reasonable alternatives to PET-ITO for flexible (R2R-processed) ECDs, it is also important to investigate measures to avoid the degradation of ECDs. This is primarily associated with the avoidance of appropriate electrode potentials necessary for ITO reduction in humid atmospheres. As an intrinsic action point, the electrode potentials were investigated via electrochemical measurements in a three-electrode setup of an all-solid-state ECD. Extensive knowledge on the electrode potentials allowed the voltage-induced degradation of the ITO in flexible ECDs to be avoided through the implementation of an unbalanced electrode configuration (charge density ratio of working and counter electrode). It was possible to narrow the overall operational voltage window to an extent in which irreversible ITO reduction no longer occurs. The unbalanced electrode configuration lead to an improved cycling stability without harming other characteristics such as response time and light transmittance change and allows ECD operation in the presence of humidity.[279]
The avoidance of the mentioned degradation phenomena is further associated with appropriate sealing methods and materials as well as appropriate electrode and device fabrication processes. Since a variety of sealing materials is commercially available, due to the commercial launch of organic photovoltaic (OPV) and light emitting diodes (OLEDs), the focus in the present work was put to water-free electrode fabrication. As an extrinsic action point, a novel preparation method of a nanoscale PEDOT-EthC6 dispersion based on organic solvents is presented here in a final step. The water-free processing method gives access to straightforward printing and coating processes on flexible PET-ITO substrates and thus represents a promising and simplified alternative to the established PEDOT:PSS. The resulting nano-PEDOT-EthC6 thin films exhibit enhanced color neutrality and transmissivity in the bright state and are comparable to the properties of the in-situ polymerized PEDOT-EthC6 thin films.[280]