• search hit 1 of 1
Back to Result List

Synthesis of Analogues and Hybrid Ligands of Pilocarpine for the Study of Muscarinic Receptor Dynamics

Synthese von Analoga und Hybridliganden von Pilocarpine zur Untersuchung muskarinischer Rezeptordynamik

Please always quote using this URN: urn:nbn:de:bvb:20-opus-281486
  • Muscarinic acetylcholine receptors (mAChRs) are involved in signal transmission at the synapses of the parasympathetic nervous system. The five subtypes of mAChRs regulate various body functions such as heart function, gland secretion, memory, and learning. For the development of drugs with the least side-effects possible, the molecular causes of subtype selectivity and signalling bias are under investigation. In this context, the study of dualsteric ligands binding simultaneously to the orthosteric and the allosteric binding sites of theMuscarinic acetylcholine receptors (mAChRs) are involved in signal transmission at the synapses of the parasympathetic nervous system. The five subtypes of mAChRs regulate various body functions such as heart function, gland secretion, memory, and learning. For the development of drugs with the least side-effects possible, the molecular causes of subtype selectivity and signalling bias are under investigation. In this context, the study of dualsteric ligands binding simultaneously to the orthosteric and the allosteric binding sites of the receptor is of high interest. To date, dualsteric ligands were synthesised as hybrids of full agonists or superagonists being the orthosteric element, linked to known subtype selective allosteric fragments. In this work, the existing library was expanded to hybrid ligands based on the partial agonist pilocarpine. A suitable linker attachment point to pilocarpine was investigated. For this aim, pilocarpine (2), isopilocarpine (15), pilosinine (16) and desmethyl pilosinine (35) were synthesised as orthosteric ligands and orthosteric fragments for the construction of the hybrid molecules (Figure 42). Pilocarpine was liberated from the commercial hydrochloride or nitrate salt and isopilocarpine was generated by epimerisation of pilocarpine. Pilosinine was synthesised in a Michael addition reaction of a dithiane carrying the imidazole moiety 82 onto the lactone precursor furan-2(5H)-one (83) followed by complete deprotection (Figure 43a).[133] The desmethyl pilosinine (35) was obtained in a newly developed synthetic route based on a Horner-Wadsworth-Emmons (HWE) reaction to build the methylene bridge between the imidazole aldehyde and the precursor of the lactone moiety 57 (Figure 43b). All four orthosters were converted to the respective dualsteric compounds with a naphmethonium fragment as allosteric moiety. The four orthosteric fragments and the four hybrid molecules with a linker length of six methylene units were tested for their dose dependent G protein recruitment at the receptor subtypes M1–5 using a mini-G nanoBRET assay. The study of the orthosteric ligands revealed that pilocarpine has the highest ability of all four orthosters to induce activity at all receptor subtypes. A change of the cis- to a trans-configuration of the lactone substituents or a complete removal of the ethyl substituent provoked a significant reduction of activity. Removal of the methyl substituent of the imidazole moiety led to improved receptor activation. The efficacies of the hybrid ligands show that the linker attachment at the imidazole moiety of pilocarpine and its analogues does not abolish activity and hybrid formation of isopilocarpine even improved receptor activation. Thus, the linker attachment point seems a valid choice, but linker length might not be optimum. In contrast to the orthosters, the trans-substitution of the lactone was advantageous for receptor activation of the hybrid ligands. The hybrid without a methyl substituent at the imidazole (69) had an increased efficacy. Additionally, the naphmethonium fragment lowered the maximum effect of pilocarpine, whereas the activity of isopilocarpine was increased. The intensity of both effects was influenced by the subtype selectivity produced by naphmethonium leading, in the case of the pilocarpine hybrid, to less decreased responses or, in the case of the isopilocarpine hybrid, to more increased responses at the M2 and M4 receptors. The results generally lead to the assumption that the allosteric moiety strongly influences the binding poses of the hybrid ligands so that the orthosteric fragments do not interact with the binding site in the same way as the orthosters alone. A second project was based on molecular dynamics simulations of the binding pose of pilocarpine,[73] leading to the hypothesis that the partial agonism of pilocarpine results from an equilibrium between an agonistic and an antagonistic binding pose at the orthosteric binding site of the receptor. The ratio of occupancy of both binding poses determines the observed efficacy of pilocarpine. The orthosteric binding site provides more space for the ethyl substituent in the supposed antagonistic pose than in the agonistic binding pose. This hypothesis was tested by the synthesis and pharmacological evaluation of pilocarpine analogues with alkyl substituents of different sizes at the lactone (16, 31a, c, d) (Figure 44). The analogues with larger alkyl residues are expected to shift the equilibrium towards the antagonistic binding pose, the analogues with smaller residues should have the inverse effect. The synthesis of the pilocarpine analogues was first attempted as a mixture of stereoisomers which were supposed to be separated at the end of the synthetic route. The racemic mixture of the thermodynamically more stable trans-isomers of the target compounds was prepared in a one-pot Michael-addition–alkylation reaction of a dithiane imidazole onto furan-2(5H)-one similarly to the synthesis of pilosinine (Figure 45). The resulting enolate was quenched by an iodoalkane to achieve alkylation of the lactone and subsequent complete deprotection yielded the racemic trans-analogues of pilocarpine.[133] After unsuccessful attempts of chiral resolution, the mixture of trans-isomers was converted to a mixture of all four possible diastereomers in a kinetic epimerisation reaction.[95] A separation of the stereoisomers was not possible in this project so only the racemic molecule 16 (pilosinine, R = H) was obtained from this synthetic route. For the selective synthesis of the cis-isomers following a patent from Reimann,[146] both stereocenters of the target molecules were produced in the last synthetic step by a syn-hydrogenation of the α,β-unsaturated precursor (Figure 46). The racemic pilocarpine analogues, except the butyl derivative (31d), were purified by crystallisation as their nitrate salts. This provided the racemic mixtures with less than 8% of the trans-isomers as impurity. The racemic pilocarpine (2), itself, was obtained with 15% trans-impurity and was used as reference compound. Additionally, the possibility of chiral resolution by chromatographic methods was demonstrated in the case of the methyl derivative (31a). The pharmacological testing of the desired enantiomer of 31a is in progress.show moreshow less
  • Muskarinische Acetylcholinreceptoren (mAChRs) sind in den Synapsen des parasympathischen Nervensystems an der Signalübertragung beteiligt. Die fünf Subtypen der mAChRs regulieren verschiedenste Körperfunktionen, wie z.B. die Herzfunktion, die Sekretbildung, das Gedächtnis und Lernprozesse. Zur Entwicklung möglichst nebenwirkungsarmer Wirkstoffe werden die Ursachen von Subtypen- und Signalwegselektivität auf molekularer Ebene erforscht. Ein wichtiger Ansatz hierfür ist die Verwendung von dualsteren Hybridliganden, die gleichzeitig an dieMuskarinische Acetylcholinreceptoren (mAChRs) sind in den Synapsen des parasympathischen Nervensystems an der Signalübertragung beteiligt. Die fünf Subtypen der mAChRs regulieren verschiedenste Körperfunktionen, wie z.B. die Herzfunktion, die Sekretbildung, das Gedächtnis und Lernprozesse. Zur Entwicklung möglichst nebenwirkungsarmer Wirkstoffe werden die Ursachen von Subtypen- und Signalwegselektivität auf molekularer Ebene erforscht. Ein wichtiger Ansatz hierfür ist die Verwendung von dualsteren Hybridliganden, die gleichzeitig an die orthostere und die allostere Bindungsstelle des Rezeptors binden. Bisher wurden Vollagonisten und Superagonisten als orthostere Fragmente in Kombination mit bekannten subtypenselektiven allosteren Fragmenten zum Aufbau von Hybridliganden verwendet. In dieser Arbeit wurde die vorhandene Bibliothek um den Partialagonisten Pilocarpin erweitert. Dazu sollte eine geeignete Verknüpfungsstelle von Pilocarpin mit dem Linker gefunden werden. Hierzu wurden Pilocarpin (2), Isopilocarpin (15), Pilosinin (16) und Desmethylpilosinin (35) als orthostere Liganden und orthostere Fragmente für den Aufbau der Hybridliganden verwendet (Abbildung 47). Pilocarpin wurde aus dem kommerziell erhältlichen Hydrochlorid oder Nitratsalz freigesetzt und Isopilocarpin durch Epimerisierung von Pilocarpin erhalten. Pilosinin wurde in einer Michael-Additions-Reaktion eines Imidazoldithians 82 an Furan-2(5H)-on (83) gefolgt von vollständiger Entschützung mit Raney-Nickel hergestellt (Abbildung 48a).[133] Das Desmethylpilosinin (35) entstand in einer im Zuge dieser Arbeit neu entwickelten Synthese basierend auf einer Horner-Wadsworth-Emmons-Reaktion (HWE-Reaktion) zum Aufbau der Methylenbrücke zwischen Imidazol und Lakton (Abbildung 48b). Alle vier Orthostere wurden zu den entsprechenden dualsteren Molekülen mit einem Naphmethoniumfragment als allostere Einheit umgesetzt. Die vier orthosteren Liganden und die vier Hybridmoleküle mit einer Linkerlänge von sechs CH2-Gruppen wurden in einem mini-G nanoBRET Assay zur Bestimmung der dosisabhängigen G-Protein-Rekrutierung an den Rezeptorsubtypen M1 bis M5 getestet. Bei der Untersuchung der orthosteren Liganden zeigte sich, dass Pilocarpin von allen Orthosteren alle Rezeptorsubtypen am besten aktivieren konnte. Eine Änderung der cis- zu einer trans-Konfiguration der Laktonsubstituenten oder ein Entfernen der Ethylgruppe hatte signifikante Aktivitätsverluste zur Folge. Ein Entfernen des Methylsubstituenten des Imidazolrings führte zu einer verbesserten Rezeptoraktivierung. Die Aktivität der Hybridliganden belegt, dass eine Verknüpfung des Linkers mit dem Imidazol nicht zu einem kompletten Aktivitätsverlust führt und eine Hybridbildung mit Isopilocarpin die Aktivität sogar verbessert. Deshalb erscheint die Verknüpfungsstelle des Linkers sinnvoll gewählt zu sein, aber die Linkerlänge entsprach möglicherweise noch nicht dem Optimum. Bei den Hybridliganden war im Gegensatz zu den Orthosteren eine trans-Substitution des Lactonrings für die Rezeptoraktivierung von Vorteil. Zudem resultiert ein Verzicht auf den Methylsubstituenten des Imidazols in einer Steigerung des maximalen Effekts. Außerdem zeigte sich eine Verringerung der Aktivität von Pilocarpin durch die Verknüpfung mit dem Naphmethoniumfragment, jedoch eine Aktivitätssteigerung im Zusammenspiel des Allosters mit Isopilocarpin. Beide Effekte wurden in ihrer Intensität durch die Subtypenselektivität von Naphmethonium geprägt. So war die Aktivität des Pilocarpinhybrids an den Rezeptoren M2 und M4 weniger reduziert als an den übrigen Rezeptorsubtypen sowie die Aktivitätssteigerung der Isopilocarpinhybride an M2 und M4 am stärksten ausgeprägt. Insgesamt ergibt sich die Vermutung, dass das allostere Fragment die Bindungspose der Hybridliganden maßgeblich beeinflusst, sodass die Orthostere in einer veränderten Weise mit der orthosteren Bindungsstelle wechselwirken. Ein zweites Projekt basierte auf molekulardynamischen Computersimulationen zur Bindungspose von Pilocarpin.[73] Die Ergebnisse lassen vermuten, dass der Partialagonismus von Pilocarpin dadurch erklärt werden kann, dass Pilocarpin in einem Gleichgewicht zwischen einer agonistischen und einer antagonistischen Bindungspose an der orthosteren Bindungsstelle des Rezeptors gebunden ist. Das Verhältnis zwischen beiden Bindungsposen bestimmt den beobachteten Maximaleffekt. Da dem Ethylrest des Pilocarpins in der vermuteten antagonistischen Bindungspose mehr Raum zur Verfügung steht als in der agonistischen Bindungspose, sollte diese Hypothese experimentell durch Synthese und pharmakologische Untersuchung von Pilocarpinanaloga mit veränderter Raumfüllung des Alkylsubstituenten am Lakton (16, 31a, c, d) überprüft werden (Abbildung 49). Die Erwartung war, dass die Analoga mit größerem Alkylrest das Gleichgewicht zwischen den Bindungsposen zu Gunsten der antagonistischen Pose verschieben. Die kleineren Reste sollten das Gegenteil bewirken. Die Synthese der Pilocarpinanaloga sollte zunächst als Gemisch der Stereoisomere erfolgen, um diese am Ende der Syntheseroute voneinander zu trennen. Die thermodynamisch stabileren trans-Isomere der Pilocarpinanaloga wurden in einer Eintopf-Michael-Addition-Alkylierungs-Reaktion analog zur Synthese von Desmethylpilosinin hergestellt (Abbildung 50).[133] Nach vergeblichen Versuchen der Racematspaltung wurden die racemischen Mischungen der trans-Isomere einer kinetischen Epimerisierungsreaktion[95] unterzogen, um die gewünschten cis-Isomere herzustellen. Dadurch wurde jeweils ein Gemisch aller vier möglichen Stereoisomere erhalten. Eine Auftrennung war in diesem Projekt nicht möglich. Aus diesem Grund konnte nur das Analogon 16 (Pilosinin, R = H) als Racemat aus dieser Syntheseroute erhalten werden. Zur selektiven Synthese der cis-Isomere wurden, nach einem Patent von Reimann,[146] beide Stereozentren der Zielmoleküle im letzten Reaktionsschritt durch die heterogenkatalytische syn-Hydrierung der α,β-ungesättigten Vorstufe erzeugt (Abbildung 51). Die racemischen Pilocarpinanaloga mit Ausnahme des Butylderivats (31d) konnten anschließend durch Kristallisation als Nitratsalz aufgereinigt werden und wurden als Racemate mit einer Verunreinigung durch die trans-Isomere von nicht mehr als 8% erhalten. Das racemische Pilocarpin (2) wurde mit einem Anteil von 15% der trans-Isomere zur Verwendung als Referenzsubstanz hergestellt. Zudem wurde die Möglichkeit einer Racematspaltung durch chromatographische Methoden anhand des Methylderivats (31a) demonstriert. Die pharmakologische Testung des gewünschten Enantiomers von 31a ist in Arbeit.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Christine Silvia HeinzGND
URN:urn:nbn:de:bvb:20-opus-281486
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Pharmazie und Lebensmittelchemie
Referee:Prof. Dr. Ulrike Holzgrabe, Prof. Dr. Marcel Bermúdez
Date of final exam:2022/08/01
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-28148
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Muskarinrezeptor; Pilocarpin; Pilokarpin
Tag:Receptor Dynamics; muscarinic
Release Date:2023/08/01
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International