• search hit 1 of 2
Back to Result List

Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT

Please always quote using this URN: urn:nbn:de:bvb:20-opus-357925
  • Photon-counting detector (PCD) CT allows for ultra-high-resolution (UHR) examinations of the shoulder without requiring an additional post-patient comb filter to narrow the detector aperture. This study was designed to compare the PCD performance with a high-end energy-integrating detector (EID) CT. Sixteen cadaveric shoulders were examined with both scanners using dose-matched 120 kVp acquisition protocols (low-dose/full-dose: CTDI\(_{vol}\) = 5.0/10.0 mGy). Specimens were scanned in UHR mode with the PCD-CT, whereas EID-CT examinations werePhoton-counting detector (PCD) CT allows for ultra-high-resolution (UHR) examinations of the shoulder without requiring an additional post-patient comb filter to narrow the detector aperture. This study was designed to compare the PCD performance with a high-end energy-integrating detector (EID) CT. Sixteen cadaveric shoulders were examined with both scanners using dose-matched 120 kVp acquisition protocols (low-dose/full-dose: CTDI\(_{vol}\) = 5.0/10.0 mGy). Specimens were scanned in UHR mode with the PCD-CT, whereas EID-CT examinations were conducted in accordance with the clinical standard as “non-UHR”. Reconstruction of EID data employed the sharpest kernel available for standard-resolution scans (ρ\(_{50}\) = 12.3 lp/cm), while PCD data were reconstructed with both a comparable kernel (11.8 lp/cm) and a sharper dedicated bone kernel (16.5 lp/cm). Six radiologists with 2–9 years of experience in musculoskeletal imaging rated image quality subjectively. Interrater agreement was analyzed by calculation of the intraclass correlation coefficient in a two-way random effects model. Quantitative analyses comprised noise recording and calculating signal-to-noise ratios based on attenuation measurements in bone and soft tissue. Subjective image quality was higher in UHR-PCD-CT than in EID-CT and non-UHR-PCD-CT datasets (all p < 0.001). While low-dose UHR-PCD-CT was considered superior to full-dose non-UHR studies on either scanner (all p < 0.001), ratings of low-dose non-UHR-PCD-CT and full-dose EID-CT examinations did not differ (p > 0.99). Interrater reliability was moderate, indicated by a single measures intraclass correlation coefficient of 0.66 (95% confidence interval: 0.58–0.73; p < 0.001). Image noise was lowest and signal-to-noise ratios were highest in non-UHR-PCD-CT reconstructions at either dose level (p < 0.001). This investigation demonstrates that superior depiction of trabecular microstructure and considerable denoising can be realized without additional radiation dose by employing a PCD for shoulder CT imaging. Allowing for UHR scans without dose penalty, PCD-CT appears as a promising alternative to EID-CT for shoulder trauma assessment in clinical routine.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Theresa Sophie Patzer, Andreas Steven Kunz, Henner Huflage, Karsten Sebastian Luetkens, Nora Conrads, Philipp Gruschwitz, Pauline Pannenbecker, Süleyman Ergün, Thorsten Alexander Bley, Jan-Peter Grunz
URN:urn:nbn:de:bvb:20-opus-357925
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik)
Medizinische Fakultät / Institut für Anatomie und Zellbiologie
Language:English
Parent Title (English):Scientific Reports
Year of Completion:2023
Volume:13
Article Number:8226
Source:Scientific Reports (2023) 13:8226. https://doi.org/10.1038/s41598-023-35367-2
DOI:https://doi.org/10.1038/s41598-023-35367-2
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:bone; musculoskeletal system
Release Date:2024/05/03
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International