• Treffer 1 von 1
Zurück zur Trefferliste

Gate-tuned normal and superconducting transport at the surface of a topological insulator

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-140175
  • Three-dimensional topological insulators are characterized by the presence of a bandgap in their bulk and gapless Dirac fermions at their surfaces. New physical phenomena originating from the presence of the Dirac fermions are predicted to occur, and to be experimentally accessible via transport measurements in suitably designed electronic devices. Here we study transport through superconducting junctions fabricated on thin Bi2Se3 single crystals, equipped with a gate electrode. In the presence of perpendicular magnetic field B, sweeping theThree-dimensional topological insulators are characterized by the presence of a bandgap in their bulk and gapless Dirac fermions at their surfaces. New physical phenomena originating from the presence of the Dirac fermions are predicted to occur, and to be experimentally accessible via transport measurements in suitably designed electronic devices. Here we study transport through superconducting junctions fabricated on thin Bi2Se3 single crystals, equipped with a gate electrode. In the presence of perpendicular magnetic field B, sweeping the gate voltage enables us to observe the filling of the Dirac fermion Landau levels, whose character evolves continuously from electron- to hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned, and is minimum at the charge neutrality point determined from the Landau level filling. Our results demonstrate how gated nano-electronic devices give control over normal and superconducting transport of Dirac fermions at an individual surface of a three-dimensional topological insulators.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Benjamin Sacépé, Jeroen B. Oostinga, Jian Li, Alberto Ubaldini, Nuno J. G. Couto, Enrico Giannini, Alberto F. Morpurgo
URN:urn:nbn:de:bvb:20-opus-140175
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Nature Communications
Erscheinungsjahr:2011
Band / Jahrgang:2
Seitenangabe:575, 1-7
Originalveröffentlichung / Quelle:Nature Communications 2:575, DOI: 10.1038/ncomms1586
DOI:https://doi.org/10.1038/ncomms1586
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Freie Schlagwort(e):Condensed matter; Materials science; Physical sciences; nanotechnology
Datum der Freischaltung:29.10.2018
Lizenz (Deutsch):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitung