• search hit 3 of 4
Back to Result List

Induktion von Sekundärstrukturen durch den Einbau von Alanyl-PNA in Peptide und Proteine

Induction of secondary structures in peptides and proteines by incorporation of alanyl-PNA

Please always quote using this URN: urn:nbn:de:bvb:20-opus-6308
  • Die Aktivität von Biooligomeren wird wesentlich beeinflusst von deren molekularer Struktur bzw. Konformation. Eine Einflussnahme auf die Struktur sollte deswegen auch mit einer Aktivitätsveränderung einhergehen, ein „Schalten“ von Struktur somit ein „Schalten“ von Aktivität nach sich ziehen. Alanyl-PNA ist ein Oligopeptid alternierender Konfiguration mit Nukleobasen in β-Position der Alanyl-Einheiten, das durch Wasserstoffbrückenbildung und π-Stacking mit einem komplementären Strang Paarungsduplexe mit β-faltblattartiger linearerDie Aktivität von Biooligomeren wird wesentlich beeinflusst von deren molekularer Struktur bzw. Konformation. Eine Einflussnahme auf die Struktur sollte deswegen auch mit einer Aktivitätsveränderung einhergehen, ein „Schalten“ von Struktur somit ein „Schalten“ von Aktivität nach sich ziehen. Alanyl-PNA ist ein Oligopeptid alternierender Konfiguration mit Nukleobasen in β-Position der Alanyl-Einheiten, das durch Wasserstoffbrückenbildung und π-Stacking mit einem komplementären Strang Paarungsduplexe mit β-faltblattartiger linearer Struktur eingeht. Der Einbau eines Alanyl-PNA-Stranges in ein Peptid oder Protein und Zugabe des korrespondierenden Gegenstranges sollte zu einer lokalen Induktion eines β-Faltblattes führen und strukturelle Veränderungen im Gesamtpeptid hervorrufen. Es kann dann von einem molekularen Schalter gesprochen werden. Im Rahmen dieser Arbeit wurde eine vom cyclischen Peptidantibiotikum Gramicidin S abgeleitete 18mer-Peptid-Alanyl-PNA-Chimäre 20 mit eingebautem Alanyl-PNA-Pentamer dargestellt. Es konnte mittels temperaturabhängiger UV-Spektroskopie gezeigt werden, dass sich bei Zugabe des komplementären Gegenstranges nichtkovalente Duplexe bilden. CD-spektroskopische Untersuchungen dieses Dimers lieferten keine eindeutigen Beweise für das vorliegen eines β-Faltblattes. Es konnte anhand des humanen Interleukins 8 gezeigt werden, dass der Einbau von Alanyl-PNA durch die Technik der native chemical ligation in größere Peptide möglich ist. Hierfür wurde der N-terminale Thioester 31 des humanen Interleukins hIL8(1-55) durch Expression des Fusionsproteines in E.coli und Expressed Protein Ligation dargestellt. Nach Umsetzung des Thioesters 31 mit einem Alanyl-PNA-Peptid-Hybrid 29, das N-terminal mit einem freien Cystein substituiert ist, wurde durch native chemical ligation ein von dem humanen Interleukin 8 abgeleitetes 77 Aminosäuren enthaltendes Peptid 30 mit eingebauter Alanyl-PNA erhalten. Darüber hinaus wurden mit keinem, einem oder zwei Lysinen substituierte Alanyl-PNA-Hexamere dargestellt und Strukturuntersuchungen unterworfen. Es konnte mittels temperaturabhängiger UV-Spektroskopie gezeigt werden, dass der Einbau zweier Lysine sowohl die Löslichkeit als auch die Bildungskinetik verändert, die Stabilität (Tm-Wert) der Duplexe jedoch unverändert lässt. Diese Hexamere wurden Kristallisationsversuchen unterworfen, bisher konnten noch keine Kristalle erhalten werden. Basierend auf den im Rahmen dieser Arbeit erhaltenen Ergebnissen sollte es in Zukunft darüber hinaus möglich sein, genaueren Aufschluss über die Struktur von Alanyl-PNA zu erhalten. Die Erhöhung der Löslichkeit von Alanyl-PNA durch Einbau zweier Lysine ermöglicht nicht nur weitere Kristallisationsversuche, sondern man gelangt auch in Konzentrationsbereiche, in denen NMR-Untersuchungen an Alanyl-PNA möglich werden, die bisher aufgrund zu schlechter Löslichkeit zu keinen zufrieden stellenden Ergebnissen geführt haben. Durch weitere Optimierung der native chemical ligation und Bereitstellung größerer Mengen von Interleukin 8 Derivaten mit eingebauter Alanyl-PNA sollte es in Zukunft möglich sein, den Einfluss des komplementären Alanyl-PNA-Stranges auf die Struktur des Gesamtsystems und dessen biologischer Aktivität zu untersuchen. Durch Variation und Optimierung der Sequenz und des örtlichen Einbaus der Alanyl-PNA kann so vielleicht das Fernziel eines molekularen strukturellen Schalters für Peptide bzw. Proteine erreicht werden. Ebenso ist es denkbar, dass durch den Einbau von Alanyl-PNA in zwei verschiedene Peptide bzw. Proteine nichtkovalente Protein-Protein-Komplexe erhalten werden können.show moreshow less
  • Activity and properties of biooligomers depend mainly on their molecular structure and conformation. Changing structure causes also a change of activity. Therefore, “switching” structure results in “switching” activity. Alanyl-PNA is an oligopeptide consisting of amino acids with alternating configuration with nucleobases attached to the β-position of an alanyl unit. Addition of a complementary peptide strand induces a β-sheet like conformation in the backbone of the duplex by hydrogen bonding and π-stacking . Incorporation ofActivity and properties of biooligomers depend mainly on their molecular structure and conformation. Changing structure causes also a change of activity. Therefore, “switching” structure results in “switching” activity. Alanyl-PNA is an oligopeptide consisting of amino acids with alternating configuration with nucleobases attached to the β-position of an alanyl unit. Addition of a complementary peptide strand induces a β-sheet like conformation in the backbone of the duplex by hydrogen bonding and π-stacking . Incorporation of alanyl-PNA into a peptide or protein and addition of a complementary sequence should induce a β-sheet like structure and produce structural changes in the entire system. For this effect the term molecular switch can be used. In this work a peptide-alanyl-PNA chimera 20 consisting of a sequence of 18 amino acids, which was derived from the cyclic antibiotic Gramicidin S, has been synthesized. It contained a terminal alanyl-PNA pentamere. Using temperature dependent UV-spectroscopy it could be proven that addition of the complementary strand led to noncovalent duplexes. Investigations by CD-spectroscopy did not give clear evidence for the existence of a β-sheet. To accomplish the incorporation of alanyl-PNA into larger peptides the techique native chemical ligation has been applied. Alanyl-PNA has been incorporated into the 77 amino acids containing peptide human interleukine 8 (hIL8). The N-terminal thioester hIL8(1-55) 31 was expressed by a fusion-protein in E.coli and worked up by Expressed Protein Ligation. After reaction of the thioester 31 with an alanyl-PNA-peptide hybrid 29, N-terminally substituted with a free cysteine, a new analogue 30 of hIL-8 could be obtained by native chemical ligation. Furthermore, alanyl-PNA hexamers containing up to two lysines have been synthesized and subjected to structural examinations. Using temperature dependent UV-spectroscopy it could be shown that the incorporation of two lysines not only increased the solubility of the oligomers substantially but also had strong influence on the kinetics of the duplex formation, whereas the stability of the pairing complex (defined by the Tm value) did not change. Attempts to crystallize these hexamers have not been successful up to the present. On the basis of these results it should be possible to obtain in the future more detailed information about the structure of alanyl-PNA. Due to the poor solubility, previous NMR examinations did not give satisfying results. The increase in solubility by addition of a second lysine to alanyl-PNA will allow in future further crystallisation experiments and more promising NMR investigations. By optimization of the native chemical ligation and supply of larger amounts of interleukine 8 derivatives with incorporated alanyl-PNA it should be possible to examine the influence of a complementary alanyl-PNA strand on the structure of the entire system and its biological activity. By variation and optimization of the sequence and the local incorporation of alanyl-PNA moieties the objective of a molecular switch for peptides and proteins might be reached. The incorporation of alanyl-PNA into two different peptides or proteins might also result in the formation of noncovalent protein-protein-complexes mediated by hydrogen bonding.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Markus Fritz Heinrich Hoffmann
URN:urn:nbn:de:bvb:20-opus-6308
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Organische Chemie
Date of final exam:2003/07/11
Language:German
Year of Completion:2003
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Peptide; Proteine; Sekundärstruktur
Tag:PNA; Peptide; Sekundärstrukturen; molekularer Schalter
PNA; molecular switches; peptides; secondary structures
Release Date:2003/07/23
Advisor: Diederichsen Ulf (Dr.)