• Treffer 2 von 3
Zurück zur Trefferliste

Spatially Resolved Study of Backscattering in the Quantum Spin Hall State

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-127225
  • The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb theThe discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Markus König, Matthias Baenninger, Andrei G. F. Garcia, Nahid Harjee, Beth L. Pruitt, C. Ames, Philipp Leubner, Christoph Brüne, Hartmut Buhmann, Laurens W. Molenkamp, David Goldhaber-Gordon
URN:urn:nbn:de:bvb:20-opus-127225
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Physical Review X
ISSN:2160-3308
Erscheinungsjahr:2013
Band / Jahrgang:3
Heft / Ausgabe:2
Seitenangabe:21003
Originalveröffentlichung / Quelle:PHYSICAL REVIEW X 3, 021003 (2013). DOI: 10.1103/PhysRevX.3.021003
DOI:https://doi.org/10.1103/PhysRevX.3.021003
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 53 Physik / 539 Moderne Physik
Freie Schlagwort(e):branched flow; charge; mesoscopics; nanostructures; topological insulators; transport; wells
Datum der Freischaltung:03.03.2016
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung