• search hit 1 of 1
Back to Result List

Untersuchungen zum Thermoschockverhalten von Keatit-Mischkristall-Glaskeramiken

Investigation of the Thermal-Shock-Behaviour of Keatit-Solid-Solution Glass-Ceramics

Please always quote using this URN: urn:nbn:de:bvb:20-opus-4120
  • LAS-Glaskeramiken aus Keatit-Mischkristallen (KMK) sind aufgrund ihres relativ hohen thermischen Ausdehnungskoeffizienten (TAK) a20-700 von etwa 1·10-6 K-1 deutlich empfindlicher gegen einen äußeren Thermoschock als Glaskeramiken aus Hochquarz-Mischkristallen (HQMK) deren TAK etwa um den Faktor 10 geringer ist. Dennoch konnte gezeigt werden, dass Glaskeramikplatten mit KMK als Hauptkristallphase unter entsprechenden Bedingungen eine nahezu vergleichbar hohe Thermoschockbeständigkeit besitzen können. Die vorliegende Arbeit untersuchte dieLAS-Glaskeramiken aus Keatit-Mischkristallen (KMK) sind aufgrund ihres relativ hohen thermischen Ausdehnungskoeffizienten (TAK) a20-700 von etwa 1·10-6 K-1 deutlich empfindlicher gegen einen äußeren Thermoschock als Glaskeramiken aus Hochquarz-Mischkristallen (HQMK) deren TAK etwa um den Faktor 10 geringer ist. Dennoch konnte gezeigt werden, dass Glaskeramikplatten mit KMK als Hauptkristallphase unter entsprechenden Bedingungen eine nahezu vergleichbar hohe Thermoschockbeständigkeit besitzen können. Die vorliegende Arbeit untersuchte die Ursachen für die Thermoschock-Beständigkeit (nach der Prüfmethode Temperatur-Unterschiedsfestigkeit, kurz TUF, genannt) der KMK-Glaskeramik und zeigte Einflussgrößen zur Optimierung des Thermoschockverhaltens dieses Materials auf. Es wurde gezeigt, dass in dem Material eine grundlegende Thermoschockbeständigkeit („Grund-TUF“) durch die Kenngrößen a, E und n bedingt wird, die durch entsprechende Keramisierungsbedingungen nochmals erhöht werden kann. Diese zusätzliche Thermoschockbeständigkeit konnte auf eine Randschicht von etwa 100 µm zurückgeführt werden. Es wurde gezeigt, dass die Ursache für die verbesserte Thermoschockbeständigkeit in einer Druckvorspannung der Randschicht von weniger als 10 MPa, die über den Keramisierungsprozess eingebracht wird, liegt. Diese sehr geringen Schichtspannungen konnten über Vickerseindrücke identifiziert und mit einem Modell auf Basis der Risszähigkeit qualitativ bis semi-quantitativ beschrieben werden. Die Spannungen in der Randschicht beeinflussen die Rissausbreitung der Vickersrisse. Damit können nach Ausmessen der Risse relative Aussagen über die Spannungen und somit über die TUF der untersuchten Platte gemacht werden. Auf diese Weise konnte sowohl die TUF als Randschichteigenschaft identifiziert werden, als auch Proben mit unterschiedlicher TUF mittels geeigneter Vickerseindrücke unterschieden werden.show moreshow less
  • Because of their relatively high coefficient of thermal expansion (CTE) of about 1·10-6 K-1, LAS-type glass-ceramics consisting mainly of keatite solid solution (s.s.) are much more sensitive to fracture due to thermal shock than glass-ceramics consisting mainly of high-quartz s.s., the CTE of which is about 10 times smaller. Nevertheless, it was shown that with certain parameters a glass-ceramic consisting of keatite s.s. can be produced to satisfy the criteria for thermal shock resistance. In this work the thermal shock behaviour (TUF) in aBecause of their relatively high coefficient of thermal expansion (CTE) of about 1·10-6 K-1, LAS-type glass-ceramics consisting mainly of keatite solid solution (s.s.) are much more sensitive to fracture due to thermal shock than glass-ceramics consisting mainly of high-quartz s.s., the CTE of which is about 10 times smaller. Nevertheless, it was shown that with certain parameters a glass-ceramic consisting of keatite s.s. can be produced to satisfy the criteria for thermal shock resistance. In this work the thermal shock behaviour (TUF) in a keatite s.s. glass-ceramic was investigated and optimised. A basic thermal shock resistance (“Basic-TUF”) is caused by the parameters a, E and n which can be increased through suitable ceramisation parameters. This additional thermal shock resistance can be attributed to a surface layer of approximately 100 µm thickness. The ceramisation process can induce compressive stresses of up to 10 MPa, which increase consequently the TUF. These small stresses were semi-quantitatively characterised by the use of Vickers indentation and described by a model, based on the theory of fracture toughness. The stresses influence the crack growth of the induced cracks. The length of these Vickers cracks can be correlated to the stresses and the TUF. As a consequence the TUF can be identified as a surface near property. It is also possible to distinguish between samples with high and low TUF-values.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Christian Hans-Georg Roos
URN:urn:nbn:de:bvb:20-opus-4120
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Lehrstuhl für Silicatchemie
Date of final exam:2002/12/13
Language:German
Year of Completion:2002
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Glaskeramik; Thermoschock; Keatit; Mischkristallkeramik; Thermoschockverhalten
Tag:Glaskeramik; Thermoschock
Glass-Ceramic; Thermal-Shock
Release Date:2003/01/03
Advisor:Prof. Gerd Müller